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RESUMEN 

La estimación de la biomasa forestal aérea (“Above Ground Biomass” 

AGB) generalmente suele realizarse mediante un método directo (destructivo), que resulta ser 

preciso pero conlleva altos costos económicos y en tiempo y debe ser realizado en áreas 

pequeñas. Las imágenes de satélite permiten registrar información de grandes áreas de terreno 

como la Sierra Madre Occidental en el Estado de Durango, la aplicación a esta información 

de los nuevos métodos de estadística paramétrica y no paramétrica, permiten la 

cuantificación de un gran número de variables de interés forestal con suficiente precisión, y 

entre ellas se encuentra la biomasa forestal aérea. El estudio se desarrolló en la Sierra Madre 

Occidental, en el Estado de Durango, abarcando una superficie de 6.33 millones de 

hectáreas aproximadamente. Se establecieron Sitios Permanentes de Investigación Forestal 

y Suelos (SPIFyS) de 2500 m2 de superficie. Se utilizaron imágenes del sensor Landsat-5 TM 

tratadas con diferentes algoritmos de corrección radiométrica, variables de textura 

derivadas del NDVI, asi como variables topográficas obtenidas del modelo digital de 

elevación. El análisis estadístico fue realizado mediante técnicas paramétricas y no 

paramétricas. Las variables espectrales de mayor importancia para cuantificar la AGB 

fueron las del espectro infrarrojo (cercano y medio). Por otra parte, el índice de humedad, 

como variable topográfica, presentó una fuerte asociación con la presencia de biomasa. Las 

técnicas estadísticas no paramétricas fueron las que mejor predijeron la AGB. Estos 

resultados demuestran que el uso de sensores remotos representan una alternativa 

importante con bajos costos (económico y de tiempo), en la cuantificación y monitoreo de 

AGB en la Sierra Madre Occidental de Durango, lo que favorecerá la toma de decisiones 

para el manejo de los recursos forestales. 

Palabras clave: AGB, Landsat-5 TM, SPIFyS, no paramétrica 
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SUMMARY 

The estimation of aerial forest biomass ("Above Ground Biomass" AGB) usually is 

usually performed by a direct method (destructive), which turns out to be accurate but carries 

high economic costs and time and should be done in small areas. Satellite images allow 

information recording large areas of land as the Sierra Madre Occidental in the State of 

Durango, applying this information to new methods of parametric and non-parametric 

statistics, allow quantification of a large number of variables of interest with sufficient 

precision forestry, and including aerial forest biomass is located. The study was conducted in 

the Sierra Madre Occidental, in the State of Durango, covering an area of approximately 6.33 

million hectares. Permanent sites Forest and Soil Research (SPIFyS) of 2500 m2 were 

established. Topographic variables derived from digital elevation model Landsat-5 TM sensor 

treated with different radiometric correction algorithms, texture variables derived from NDVI 

were used, as well. Statistical analysis was performed using parametric and nonparametric 

techniques. The spectral variables most important to quantify the AGB were the infrared 

spectrum (near and medium). Moreover, the moisture content, such as topographical variable, 

showed a strong association with the presence of biomass. Nonparametric statistical 

techniques were those that best predicted the AGB. These results demonstrate that the use of 

remote sensors represent an important Altena low (financial and time) costs, quantification 

and monitoring of AGB in the Sierra Madre Occidental in Durango, which will facilitate 

decision making for the management of forest resources. 

Keys words: AGB, Landsat-5 TM, SPIFyS, no paramétric 
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CAPÍTULO 1.  

ORGANIZACIÓN DE LA TESIS 

El presente documento está dividido en seis capítulos. El primero se corresponde con la 

introducción general. El segundo, tercero, cuarto y quinto están conformados por los artículos 

científicos publicados en revistas indexadas y derivados del trabajo de tesis doctoral. En el 

capítulo sexto se ubican las conclusiones generales. 

Los artículos que conforman los capítulos del segundo al quinto, a la fecha de redacción de 

este documento, han sido aceptados y publicados en las revistas: iForest. vol. 9, pp. 226-234. 

DOI:10.3832/ifor1504-008, Forests 2016, 7(3), 70, DOI:10.3390/f7030070, Canadian 

Journal of Remote Sensing, (en prensa) y Remote sensing, 8(5), 369, DOI:10.3390/rs8050369, 

respectivamente. A continuación se hace una breve descripción de cada capitulo: 

Capítulo 1: Introducción general. Aporta un panorama general del documento de tesis. 

Capítulo 2: “Estimación de la biomasa de bosques mixtos y de diferentes edades usando 

datos espectrales y un modelo híbrido que combina árboles de regresión y modelos lineales”, 

cuyo título publicado en inglés es “Estimating biomass of mixed and uneven-aged forests 

using spectral data and a hybrid model combining regression trees and linear models”. El 

objetivo del presente estudio fue modelar la biomasa forestal en bosques mixtos de edad 

diferente en la Sierra Madre Occidental (SMO), mediante el uso de imágenes Landsat-5 TM, 

variables del terreno y datos de los inventarios forestales tradicionales (terrestres) obtenidos a 

partir de una red de parcelas permanentes de muestreo (SPIFyS). Se compararon dos enfoques 

distintos: el método de modelado habitual de ajuste de una relación lineal entre la biomasa 

obtenida en sitios de campo e imágenes de satelite, y un nuevo enfoque que consiste en un 

modelo híbrido que combina árboles de regresión y modelos lineales en los nodos finales del 

árbol. Por lo que sabemos, esta es la primera vez que este enfoque híbrido se ha utilizado para 

modelar la biomasa con datos de teledetección. 

Capítulo 3: “Estimacion geospacial de la biomasa forestal aérea en la Sierra Madre 

Occidental”, cuyo título publicado en inglés es “Geospatial estimation of above ground forest 

biomass in the Sierra Madre Occidental in the state of Durango, México”. El principal 

objetivo de este estudio fue estimar la AGB en la SMO mediante el análisis de datos 
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espectrales de media resolución bajo tratamiento de corrección de reflectancia aparente en el 

techo de la atmósfera (ToA's) y la reflectancia de la superficie (SR) usando datos de campo de 

una red de 201 sitios permanentes (SPIFyS), instalados por muestreo sistemático en la zona de 

estudio en el año 2011. Se utilizó el algoritmo M5P que construye modelos lineales basados en 

árboles de regresión y clasificación. 

Capítulo 4: “Una comparación de técnicas de machine learning aplicando datos espectrales 

de Landsat-5 TM para la estimación de la biomasa”, cuyo título en inglés es “A comparison of 

machine learning techniques applied toLandsat-5 TM spectral data for biomass estimation”.  

El objetivo de este estudio fue comparar el desempeño de tres de las técnicas no paramétricas 

más comunes reportadas en la literatura (Support Vector Machine [SVM], k-Nearest 

Neighbours [kNN] y Random Forest [RF]) y la técnica paramétrica de regresión lineal 

multiple (MLR) para estimar AGB a partir de datos espectrales del sensor Landsat-5 TM, de 

parámetros de textura derivadas del índice de vegeacion de diferencia normalizada (NDVI) y 

de variables topográficas derivadas del modelo digital de elevación. 

Capítulo 5: “Evaluación de algoritmos de corrección radiométrica en la estimación de 

biomasa aérea forestal mediante datos del sensor Landsat-5 TM”, cuyo título en inglés es 

“Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest 

Biomass Estimation Using Landsat 5 TM Data”. El objetivo del estudio fue evaluar cuatro 

algoritmos de corrección atmosférica (reflectancias en superficie) ATCOR, FLAASH, COST 

y 6S, junto con el algoritmo de corrección radiométrica ToA (reflectancia en el sensor), para 

estimar la AGB en los bosques templados al noreste del estado de Durango, México. Como 

fuente de datos se utilizó una imagen del sensor Landsat-5 TM y parámetros derivados del 

modelo digital de elevaciones (MDE) a partir de datos de campo procedentes de 99 sitios 

permanentes (SPIFyS) establecidos durante el invierno del año 2011 a través de un muestreo 

sistemático. La cuantificación de AGB se realizó mediante la técnica no paramétrica 

denominada “Multivariate Adaptative Regression Splines” (MARS). 

Capítulo 6: Conclusiones generales. En este último capítulo se exponen los hallazgos más 

relevantes de los distintos resultados derivados de cada artículo en el trabajo de investigación 

doctoral y se hacen algunas recomendaciones para investigaciones futuras. 
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INTRODUCCION GENERAL 

La Sierra Madre Occidental (SMO) es un área de gran interés ecológico por su alta 

heterogeneidad ambiental. El estudio de la biomasa forestal aérea (AGB) para este tipo de 

ecosistemas generalmente suele realizarse mediante un método directo (destructivo), que 

resulta ser preciso, pero conlleva altos costos, tiempo y son realizados en áreas pequeñas. En 

este sentido, la emergencia de la teledetección satelital cuantitativa con diferentes tipos de 

sensores (activos y pasivos), permite estimar parámetros dasométricos habitualmente medidos 

en inventarios forestales en menor costo, tiempo y abarcando grandes superficies, cuyos 

métodos son divididos en físicos y estadísticos. Asimismo el tratamiento de las imágenes de 

satélite es un importante paso para mejorar la calidad de los datos e interpretación, sobre todo 

para ecosistemas forestales, que generalmente se encuentran en superficies accidentadas. 

Dicho tratamiento consiste en corregir algunos efectos nebulosos ocacionados por la absorción 

o dispersión que provocan las partículas en suspensión (aerosoles) y otros elementos que 

integran la atmósfera. Asu vez, la generación de índices de vegetación y variables de textura 

derivadas de las imágenes satelitales se emplean como variables auxiliares en la estimación de 

la AGB. 

Por otro lado, la utilización de métodos estadísticos para generar modelos potencialmente 

más complejos y precisos en la estimacion de la AGB, es uno de los temas mas importantes 

que se consideran al momento de trabajar con imágenes de satélite con respecto a los datos de 

campo. Es por ello, que la implementación de técnicas de machine learning, ofrece una gama 

de técnicas paramétricas y no paramétricas con mecanismos de validación cruzada para 

evaluar la calidad de una determinada técnica de ajuste y minimizar el riesgo de sobreajuste a 

los datos de entrenamiento. 

En este sentido, los resultados de este documento de tesis permiten establecer diferentes 

líneas futuras para estimar la AGB mediante sensores remotos bajo diferentes técnicas 

estadísticas, asi como diferentes técnicas de correccion radiométrica usadas en sensores de 

media resolución, como Landsat 5 TM.  
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REVISION DE LITERATURA 

Sensores remotos pasivos 
 
La Sierra Madre Occidental (SMO) es una provincia de gran interés ecológico por su alta 

heterogeneidad ambiental, atribuido a la existencia de una gran diversidad fisiográfica y 

climática (González et al., 2012). Aunado a ello, su importancia se incrementa al contar con 

especies de pinos y encinos, que son altamente representativos y de gran interés económico en 

los ecosistemas de México y del mundo (Sánchez et al., 2003). Dentro de esta provincia 

ecológica se ubica el estado de Durango (71.5% de su superficie), que está considerado como 

la primer reserva nacional forestal, generando entre el 25 y 30% de la producción maderable 

nacional con un total de 5.5 millones de m3 de madera en rollo anuales, además de ser una 

importante fuente de servicios ambientales (SEMARNAT, 2011). Uno de los principales 

recursos de estos ecosistemas es la biomasa forestal aérea (“Above Ground Biomass” AGB), 

que generalmente suele cuanatificarse mediante un método directo (destructivo), que resulta 

ser preciso pero conlleva altos costos económicos y en tiempo y que, por tanto, sólo son 

viables en áreas pequeñas (Ketterings et al., 2001, Zianis and Mencuccini, 2004, Walker et al., 

2011). En este sentido, la emergencia de la teledetección satelital cuantitativa ha facilitado 

evitar estos inconvenientes, ya que permite estimar parámetros dasométricos habitualmente 

medidos en inventarios forestales en base a un menor costo, tiempo y abarcando grandes 

superficies (Liang, 2007). Un buen número de estudios han utilizado estas tecnologías 

emergentes (imágenes de satélite) para la estimación de la AGB en diferentes ecosistemas (por 

ejemplo, Muukkonen and Heiskanen, 2005, Fuchs, et al., 2009 o Hernández-Stefanoni et al., 

2011).  

Mineria de datos 
 
Por otro lado, independientemente del tipo de sensor remoto utilizado para dichas 

estimaciones, la precisión y la estimación del error de los modelos obtenidos varían en función 

de una serie de factores, tales como la estructura de los datos de campo o la técnica estadística 

empleada (Ghosh et al., 2014). Actualmente, las estimaciones espaciales de AGB se han 

centrado en el uso de algoritmos informáticos (machine learning) y técnicas no paramétricas 
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con el fin de construir modelos capaces de hacer predicciones a partir de una estructura 

compleja de datos (Lima et al., 2013, Fassnacht et al., 2014). 

Las metodologías incluidas dentro de lo que se denomina “machine learning” comprenden 

un conjunto de técnicas estadísticas que utilizan un enfoque inductivo automático para 

reconocer patrones en unos datos de entrenamiento, una vez aprendido dicho patrón, se aplica 

al resto de los datos de validación para proporcionar una predicción, cuando la variable de 

interés es cuantitativa, o una clasificación cuando la variable de interés es cualitativa 

(Cracknell and Reading, 2014). En la última década, las técnicas no paramétricas más 

utilizadas  en machine learning con el fin de desarrollar modelos predictivos de AGB en 

grandes áreas han sido: Support Vector Machines (SVM), k-Nearest Neighbour (k-NN) y 

Random Forest (RF) (Fassnacht et al., 2014). 

La aplicación de estas técnicas permite generar modelos potencialmente más complejos y 

precisos en comparación con la regresión lineal múltiple (MLR), que es la técnica paramétrica 

que tradicionalmente se ha venido aplicando en estos estudios (Morel et al., 2012, Næsset et 

al., 2013). Aunque el empleo de metodologías de machine learning puede mejorar los 

resultados de MLR, tienen el inconveniente de poder provocar un sobreajuste del modelo a los 

datos de entrenamiento (Hawkins, 2004). Este inconveniente debe ser tenido muy en cuenta en 

la estadística espacial porque puede llevar a una estimación sesgada de los parámetros del 

modelo y a reducir la exactitud de las predicciones (Johnson and Omland, 2004). 

Generalmente, las medidas más comunes para evaluar la bondad del ajuste de los modelos 

derivados de datos espectrales son el coeficiente de determinación (R2) y la raíz del error 

cuadrático medio (RMSE) (Lumbres and Lee, 2014, Porter et al., 2014). Cabe señalar que con 

estas medidas se reporta el desempeño del modelo predictivo de datos que se utilizaron para 

ajustar el modelo, sin embargo, al carecer de un análisis de validación independiente, el error 

en la aplicación práctica resulta ser más grande del que se reporta (Castillo-Santiago et al., 

2013, Fernández-Manso et al., 2014). Es por ello la importancia de la aplicación de 

mecanismos como la validación cruzada (“cross-validation” CV), que permite evaluar la 

calidad de una determinada técnica de ajuste y minimizar el riesgo de sobreajuste a los datos 

de entrenamiento (Molinaro et al., 2005). Pero aun así, cuando se realizan comparaciones 

entre los resultados de rendimiento de múltiples métodos a una misma base de datos, es 
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también necesario realizar un estudio estadístico que apoye y justifique las conclusiones 

alcanzadas (García et al., 2010). 

Algoritmos de correccion radiométrica 
 
El tratamiento de las imágenes de satélite es un importante paso para mejorar la calidad de 

los datos y su interpretación, sobre todo para ecosistemas forestales, que generalmente se 

encuentran en superficies accidentadas (Richter, 2013) en donde el efecto de las condiciones 

topográficas causan variaciones en los valores de reflectancia en función de la geometría del 

terreno y del ángulo de elevación solar (Richter and Schläpfer, 2011). Además, la calidad de 

los productos finales obtenidos a partir de las imágenes depende, en gran medida, de una 

eficiente calibración de los parámetros del sensor y de la corrección de las potenciales 

alteraciones en la imagen debidas a efectos de distorsion radiométrica y de la atmósfera (Li et 

al., 2010). Por consiguiente, la aplicación de una corrección topográfica y atmosférica se hace 

necesaria para contrarrestar dichos efectos, considerando atributos del modelo digital de 

elevación (MDE) como la pendiente, orientación, sombreado, “skyview” y altitud, junto con 

parámetros de calibración de los sensores y características de la atmosfera y radiación solar 

(Balthazar et al., 2012, Richter, 2013). Estos parámetros primarios, al igual que los 

secundarios (índices topograficos), derivados estos últimos del MDE, están estrechamente 

relacionados con índices de diversidad de especies o estructura del bosque, habiéndose 

aplicado para describir procesos hidrológicos, geomorfológicos y ecológicos (Moore and 

Nieber ,1989, Wilson and Gallant, 2000). 

Índices de Vegetación (IV) 
 
El uso de índices de vegetación (IV) que resultan de las combinaciones entre bandas 

espectrales, como indicadores de parámetros biofísicos de la vegetación, tienen como objetivo 

resaltar la contribución de la vegetación activa en la respuesta espectral de una superficie, 

minimizando el efecto de otros factores, tales como suelo, restos de vegetación seca o 

atmósfera (Gilabert et al., 1997). Estos IV están basados en el alto contraste existente entre 

diferentes bandas de las imágenes de satélite para diferentes parámetros de interés de la 

cobertura vegetal, como pueden ser la banda del rojo (R) y la del infrarrojo cercano (NIR), 

para discriminar la vegetación viva y verde (Tucker, 1979).  
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Variables de Textura de la imagen 
 
Otro proceso que permite la obtención de variables auxiliares para la modelación con 

imágenes satélite es el análisis de textura, que es una cuantificación de la variación en el 

dominio espacial de valores en tonos de grises mediante una matriz de co-ocurrencia (GLCM, 

Grey Level), siendo muy útil a la hora de la identificación de áreas u objetos de interés dentro 

de la imagen (Haralick et al., 1973, Botero and Restrepo, 2010) y que han sido empleados en 

análisis clasificatorios y de modelización de características de la vegetación (Diaz-Varela et 

al., 2011). 

Variables de Terreno 
 

Dado que la topografía constituye uno de los principales factores que regula la humedad del 

suelo, a partir de ella se han generado índices topográficos e hidrológicos para predecir la 

humedad del suelo en función del relieve (Beven and Kirkby, 1979, O´Loughlin, 1986, 

Barling et al. 1994). Además, los atributos del terreno muestran una relación directa con la 

presencia, desarrollo y evaluación de las  especies forestales (McNab, 1989, Roberts and 

Cooper, 1989). Diversos autores coinciden en destacar la influencia de los distintos atributos 

topográficos en función del ambiente, principalmente, bajo estados secos o húmedos, 

reportando modelos de humedad que reflejan patrones en la vegetación (Schume et al., 2003, 

Hupet and Vanclooster, 2005), en la textura del suelo (Price and Bauer, 1984, Seyfried, 1998) 

y/o en características del uso de la tierra (Famiglietti et al., 1998, Qiu et al., 2001). Estas 

razones han hecho que los modelos digitales de elevación (MDE) constituyan una fuente de 

datos con alto potencial para caracterizar el relieve en forma cuantitativa, siendo un insumo 

importante para cuantificar la biomasa aérea forestal (Chen et al. 2004, Díaz-Varela et al. 

2011). 
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CAPÍTULO 2. ESTIMATING BIOMASS OF MIXED AND UNEVEN-
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Abstract 

The Sierra Madre Occidental mountain range (Durango, Mexico) is of great ecological 

interest because of the high degree of environmental heterogeneity in the area. The objective 

of the present study was to estimate the biomass (Mg ha-1) of mixed and uneven-aged forests 

in the Sierra Madre Occidental by using Landsat-5 TM spectral data and forest inventory data. 

We used the ATCOR3® atmospheric and topographic correction module to convert remotely 

sensed imagery digital signals to surface reflectance values. The usual approach of modelling 

stand variables by using multiple linear regression was compared with a hybrid model 

developed in two steps: in the first step a regression tree was used to obtain an initial 

classification of homogeneous biomass groups, and multiple linear regression models were 

then fitted to each node of the pruned regression tree. Cross-validation of the hybrid model 

explained 72.96% of the observed stand biomass variability with a reduction in the RMSE of 

25.47% with respect to the estimates yielded by the linear model fitted to the complete 

database. The most important variables for the binary classification process in the regression 

tree were the albedo, the corrected readings of the short-wave infrared band of the satellite 

(2.08-2.35 µm) and the topographic moisture index. We used the model output to construct a 

map for estimating biomass in the study area, which yielded values of between 51 and 235 Mg 

ha-1. The use of regression trees in combination with stepwise regression of corrected satellite 

imagery proved a reliable method for estimating forest biomass. 

Keywords: regression trees, stepwise regression, remote sensing, ATCOR3, terrain features, 
image texture 
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Introduction 

The Sierra Madre Occidental is considered an area of special ecological interest because of 

the high levels of biodiversity, which are attributed to diverse physiographic and climatic 

conditions (Challenger 1998). The area is also important because of the presence of some of 

the most important commercial species of pine and oak in Mexican ecosystems (Sánchez et 

al., 2003). 

Quantification of forest biomass and carbon sequestration is an important issue in the 

management of these forest stands. Reliable information is required for accurate biomass 

estimation, which should also take into account variable external factors that can be modelled, 

e.g. climate change (IPCC 2003, Ryu et al., 2004, Sun & Ranson 2009). However, given the 

diversity of environmental, topographical and biophysical conditions in forest ecosystems in 

different locations, there is no universal, transferrable technique for estimating biomass 

(Keller et al., 2001, Foody et al., 2003, Lu 2005, Cutler et al., 2012). 

In general, forest biomass can be measured directly (destructive analysis) or it can be 

estimated indirectly (Brown & Lugo 1984). The direct method is usually accurate, but it is 

expensive and time-consuming and can only be used in small areas (Ketterings et al., 2001, 

Zianis & Mencuccini 2004, Walker et al., 2011). These difficulties have largely been resolved 

by the appearance and further development of quantitative satellite systems and aerial remote 

sensing, together with the development of parametric and nonparametric statistical methods 

for modelling variables of interest. The stand variables usually measured in traditional forest 

inventories can now be estimated faster, at lower cost and over larger areas (Liang, 2007). The 

application of spatial technologies has allowed estimation of biomass in different ecosystems 

(e.g. Muukkonen & Heiskanen 2005, Fuchs et al., 2009, Hernández-Stefanoni et al., 2011, 

Aguirre-Salado et al., 2014). 

Pre-processing of satellite imagery is important for improving the quality and interpretation 

of data. Forest ecosystems generally cover rough terrain where the topographic conditions lead 

to variations in reflectance values because of the position of the sun (Meyer et al., 1993, 

Richter & Schläpfer, 2011, Richter, 2013). Thus, the quality of the final product largely 

depends on accurate calibration of the sensors and on radiometric correction to minimize 

distortion and atmospheric effects (Li et al., 2010). In this respect, the use of atmospheric and 

topographic correction is therefore essential to counteract such effects, and digital elevation 
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model (DEM) parameters such as slope, orientation, shadows cast, sky view and altitude can 

be used for such purposes (Balthazar et al., 2012, Richter, 2013). These primary parameters, 

together with biophysical parameters such as vegetation indices (Gilabert et al., 1997) and 

indices derived by analysis of the image texture (by quantification of the spatial variation in 

grey tones using a grey level co-occurrence matrix [GLCM]), are very useful for identifying 

areas or objects of interest in the image (Haralick et al., 1973, Botero & Restrepo, 2010). They 

can also be combined with terrain parameters to model vegetation characteristics (e.g. Lu, 

2005, Kayitakire et al., 2006, Díaz-Varela et al., 2011) as well as to describe hydrological, 

geomorphological and ecological processes (e.g. Moore & Nieber, 1989, Wilson & Gallant, 

2000). 

One of the methods most commonly used for this purpose is the classification and 

regression trees method, initially proposed by Breiman et al. (1984). This is a nonparametric 

multivariate supervised inductive learning method that basically searches for classification and 

prediction rules by recursive partitioning. In this technique, a series of binary combinations 

(yes, no) expressed in terms of a single independent variable is used to identify certain profiles 

and vectors that enable description of the individual parameters under study (Hu et al., 2010). 

The objective of the present study was to model the forest biomass in mixed and uneven-

aged forests in the Sierra Madre Occidental by using remote sensing Landsat-5 TM imagery, 

terrain parameters and forest inventory data obtained from a network of permanent plots 

sampled in a traditional (ground based) survey. Two different approaches were compared: the 

usual modelling method of fitting a linear relationship to stand biomass and site variables 

obtained from remote sensing images, and a new approach consisting of a hybrid model 

combining regression trees and linear models for the final tree nodes. As far as we know, this 

is the first time this hybrid approach has been used to model stand biomass with remote 

sensing data. 

 

Material and Methods 

Study area 

The study area is located in the UMAFOR-1001 (Unidad de Manejo Forestal Regional or 

regional forest management unit) in the Sierra Madre Occidental, in the north of the state of 

Durango (Mexico), and covers an area of 1,142,916 ha (Fig. 1). The vegetation comprises 
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pine, oak, Douglas fir, pine-oak and oak-pine forest, according to the description in the Land 

Use and Vegetation Cover Chart, scale 1:250,000, Series V (INEGI 2012). 

 

 

Figure 1. Geographical location of the study area and sample plots used in the study. 

Field data 

A network of 99 permanent sampling plots was established during the winter of 2011, 

following the method described by Corral-Rivas et al. (2009). The plots were located by 

systematic sampling (with some exceptions to avoid non forested areas) with a grid of 

equidistant points separated by between three and five kilometres, depending on the orography 

of the study area. In each plot (50 x 50 metres), the tree species were recorded and the 

diameter at breast height > 7.5 cm and total height (m) of all standing trees were measured. 

Species-specific statistical models developed by Vargas-Larreta (2013) were used to 

estimate individual (at tree level) aboveground biomass. The goodness of fit for such statistical 

models ranged from 0.87 to 0.99 (R2), and the root mean square error (RMSE) varied from 

22.8 to 95.2 kg. Once the tree aboveground biomass was estimated, all values from each 

sampling plot were summed and expressed on a per hectare basis. Summary statistics 

including number of observations, mean, standard deviation, minimum, and maximum values 

of the main stand variables are shown in Tab. 1. 

 



16 
 

 
 

Table 1. Statistics of the main stand variables. Dominant height was calculated as the mean 

height of the 100 thickest trees per hectare. 

Variable Mean Standard 
deviation Minimum value Maximum value 

Number of stems per ha 655.47 322.25 224.00 2264.00 
Stand basal area (m2 ha-1) 20.30 6.42 8.22 41.12 

Dominant height (m) 14.62 3.72 6.87 24.81 
Stand biomass (Mg ha-1) 89.03 43.45 2.70 234.03 

 

Datasets 

Source of spectral data 

Three Landsat-5 TM (Thematic Mapper) satellite images (path/row: 31/42, 32/41 and 

32/42), obtained in April and May 2011 and covering the entire study area, were examined 

(available from the US Geological Service webpage, at http://glovis.usgs.gov/). The available 

images are subjected to cubic convolution geometric correction for discrete data (level L1T), 

with a RMSE of the geometric residuals lower than 1 pixel, and they are therefore suitable for 

image processing (Keys, 1981). 

Landsat-5 TM data have spatial resolution of 30 m with a 16 day revisit period. The swath 

width is 185 km with seven spectral bands in the following wavelength regions of the 

electromagnetic spectrum: blue (0.45-0.52 µm), green (0.52-0.60 µm), red (0.63-0.69 µm), 

near infrared (0.78-0.89 µm), short-wave infrared (1.55-1.75 µm) and short-wave infrared 

(2.08-2.35 µm). These wavelength regions correspond respectively to bands 1, 2, 3, 4, 5 and 7 

of the Landsat-5 TM satellite (NASA, 2011). Given its thermal characteristics, band 6 was not 

used in the present study. 

Atmospheric and topographic correction (ATCOR3®) 

The satellite images were corrected radiometrically, atmospherically and topographically 

using the ATCOR3® module, regarded as particularly suitable for mountainous zones, 

(Geosystems 2013) and implemented with ERDAS® IMAGINE® 2013 software (ERDAS Inc. 

2013). After the correction, the original image digital levels (DL) were converted to ground 

reflectance values for each band. A number of vegetation indices and other derived parameters 

(Tab. 2) were computed from the atmospherically and topographically corrected image bands 

and then included in the biomass estimation models for their evaluation as possible regressor 

variables. Vegetation indices are regarded as good indicators of vegetation cover “greenness” 
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(understood as a combination of attributes such as leaf chlorophyll content, leaf area, canopy 

cover and structure, Glenn et al. 2008) and are good indicators of vegetation canopy biomass. 

Hence, the Normalized Difference Vegetation Index (Rouse et al., 1974) and Soil Adjusted 

Soil Vegetation Index (Huete 1988) were included as indices correlated with green biomass 

content, with the former being particularly suited for scattered vegetation land cover. The Leaf 

Area Index (Baret & Guyot, 1991) derived from NDVI was also included as a good indicator 

of green biomass. Albedo (Asrar, 1989), photosynthetically active radiation (Asrar et al., 

1984) and absorbed shortwave solar radiation (Brutsaert, 1975) were also included as 

comprehensive indicators of the interaction between land cover and solar radiation in the 

visible and near-infrared regions of the electromagnetic spectrum. 

 

Table 2. Vegetation indices analyzed in the present study. 

Vegetation index Definition Author 
Normalized Difference 

Vegetation Index 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 Rouse et al. (1974) 

Soil Adjusted Soil 
Vegetation Index 𝑆𝐴𝑉𝐼 =

(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷) ∗ 1.5

(𝜌𝑁𝐼𝑅 +  𝜌𝑅𝐸𝐷) + 0.5
 Huete (1988) 

Modifield Soil-
adjusted Vegetation 

Index 
𝑀𝑆𝐴𝑉𝐼2 =

(2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 − 𝑅𝐸𝐷))

2
 Qi et al. (1994) 

Leaf Area Index 𝐿𝐴𝐼 = − (
1

0.6
) ln [

0.6 − 𝑁𝐷𝑉𝐼

0.78
] 

Baret and Guyot 
(1991) 

Albedo 𝑎 =
∫ 𝜌(𝜆)𝑑𝜆

2.5𝜇𝑚

0.3𝜇𝑚

∫ 𝑑𝜆
2.5𝜇𝑚

0.3𝜇𝑚

 Asrar (1989) 

Fraction of 
Photosynthetically 
Active Radiation 

𝐹𝑃𝐴𝑅 =  𝐶 [ 1 –  𝐴 exp(−𝐵 𝑥 𝐿𝐴𝐼)] Asrar et al. (1984) 

Absorbed Shortwave 
Solar Radiation 𝑅𝑠𝑜𝑙𝑎𝑟 = ∫ (1 − 𝜌( 𝜆 )𝐸𝑔 (𝜆) 𝑑 𝜆 

2.5𝜇𝑚

0.3𝜇𝑚

 Brutsaert (1975) 

where: 

𝑁𝐼𝑅: Near-infrared band (0.83 μm) 

𝑅𝐸𝐷: Red band (0.63 μm)  

𝜌: Reflectance 

1 − 𝜌( 𝜆 ): Absorbed part of radiation 

𝐸𝑔 (𝜆): The global (direct plus diffuse) solar flux on the ground 

𝐶: Constant value 0.8 

𝐴: Constant value 1 

𝐵: Constant value 0.4 

∫ :
2.5𝜇𝑚

0.3𝜇𝑚
Extrapolation for region of the 0.3 – 2.5 μm (bands) of most satellite sensors 

𝑑𝜆: Adjustable parameter used to derive direct albedo on solar zenith angle 
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The ATCOR3® module (Geosystems, 2013) first calculates the radiance at sensor level 

(Wsr-1m-2) from the image pixels DL. Several input parameters were required for this 

calculation and were retrieved from the image metadata (header file): date of acquisition, scale 

factors, geometry (solar zenith angle and solar azimuth) and other information about the 

sensor calibration file (gain and bias). Other parameters were adjusted by taking into account 

particularities of the input datasets and the conditions of the imagery dates, e.g. visibility (35 

km), pixel size of the DEM (15 m), aerosol type (rural), among others. As the image was 

cloudless and no suitable water vapour bands were available, dehazing/cloud removal and 

atmospheric water retrieval settings were retained as "default", which, in this case, is 

recommended by the ATCOR3® User Manual (Geosystems, 2013). 

As a prior requisite for application of the ATCOR3® module, three topographic parameters 

(namely slope, orientation, skyview and shadows cast, Richter, 2013) were computed from a 

DEM of the study area with a spatial resolution of 15 m (INEGI, 2014). Prior to these 

calculations, a low pass filter with a 5x5 moving window was applied to the original DEM in 

order to reduce the banding effects present in the original file. 

After radiometric correction, the three scenes corresponding to the study area were 

mosaicked using ERDAS® IMAGINE® 2013 software (ERDAS Inc. 2013). 

Texture parameters  

With the aim of including information that combines the spatial and spectral domain of the 

remote sensed imagery in the biomass estimation models, the following texture parameters 

were calculated from the NDVI image based on grey level co-occurrence matrices (Tab. 3): 

homogeneity, contrast, dissimilarity, mean, standard deviation, entropy, second order angular 

moment and correlation (Haralick et al.,. 1973). Calculations were done at three different 

analysis scales, corresponding to window sizes of 3x3, 5x5 and 7x7 pixels respectively. The 

original NDVI image values were resampled to a grey level depth of 256 (8 bits) to reduce 

computational costs (Haralick et al., 1973). This procedure was carried out using PCI 

Geomatica2013® software (PCI Geomatics Inc. 2013). 

Terrain variables  

Terrain variables are directly related to forest species composition, tree height growth, and 

other forest stand variables, and enable these to be modelled (McNab, 1989, Roberts & 
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Cooper, 1989). Therefore, first and second order terrain parameters (Tab. 3) were derived 

from the 5x5 low pass filtered DEM (INEGI, 2014) and included as candidate variables in the 

models. The selected first order terrain parameters were elevation, slope, transformed aspect, 

profile curvature, plan curvature and curvature, while second order terrain parameters were 

terrain shape index and wetness index. These parameters are potentially related to key features 

for forest stand development, such as overall climate characteristics, insolation, 

evapotranspiration, run-off, infiltration, wind exposure and site productivity.  

Table 3. Additional variables for biomass modelling. 

Group variable Variable Formula Reference 

Texture (NDVI) 

Homogeneity (HO) 𝐻𝑂 = ∑ 𝑖
𝑃𝑖,𝑗 

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

Haralick et al. 
(1973) 

Contrast (CO) 𝐶𝑂 = ∑ 𝑖 𝑃𝑖,𝑗 (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

Dissimilarity (DI) 𝐷𝐼 = ∑ 𝑖 𝑃𝑖,𝑗 [𝑖 − 𝑗]

𝑁−1

𝑖,𝑗=0

 

Mean (ME) 𝑀𝐸 = ∑ 𝑖 𝑃𝑖,𝑗 

𝑁−1

𝑖,𝑗=0

 

Standard Deviation (Sdt) 𝑆𝑑𝑡 = √𝑉𝐴 

Entropy (EN) 𝐸𝑁 = ∑ 𝑖 𝑃𝑖,𝑗 [−𝑙𝑛𝑖 − 𝑃𝑖,𝑗 ]

𝑁−1

𝑖,𝑗=0

 

Angular Second Moment (ASM) 𝐴𝑆𝑀 = ∑ 𝑖 𝑃2
𝑖,𝑗 

𝑁−1

𝑖,𝑗=0

 

Correlation (CR) 𝐶𝑅 = ∑ 𝑖 𝑃𝑖,𝑗 [
(𝑖 − 𝑀𝐸)(𝑗 − 𝑀𝐸)

√𝑉𝐴𝑖 𝑉𝐴𝑗
]

𝑁−1

𝑖,𝑗=0

 

Terrain (DEM) 

Elevation Digital Elevation Model 
  

Slope (β) 𝛽 =  arctan [(𝐺2 +  𝐻2)
1
2]  

Transformed Aspect (Trasp) 𝑇𝑟𝑎𝑠𝑝 =
1- cos ((π / 180 )(α- 30))

2
 Roberts and 

Cooper (1989) 

Terrain Shape Índex (TSI) 𝑇𝑆𝐼 =
�̅�

𝑅
 McNab (1989) 

Wetness Index (WI) W= ln (As/tanβ) Moore and 
Nieber (1989) 

Profile curvature (Ø) Ø=−2
𝐷𝐺2+EH2+FGH

𝐺2+𝐻2  
Wilson and 

Gallant (2000) Plan curvature (ω) 𝜔=2
𝐷𝐻2+EG2+FGH

𝐺2+𝐻2  
Curvature (x) 𝑥 =  𝜔 –  Ø 

where: 

N: Is the number of grey levels 

P: Is the normalized symmetric GLCM of dimension N x N.  

V: Is the vector difference normalized grey level of dimension N.  

P (i, j ): Is the matrix of co-occurrence normalized so that ∑𝑁−1
𝑖,𝑗=0 ∑ 𝑃 (𝑖 − 𝑗)𝑁−1

𝑖,𝑗=0 . 

V (k): Is the normalized grey level difference vector ∑𝑁−1
𝑖,𝑗=0 ∑ 𝑃 (𝑖 − 𝑗)𝑁−1

𝑖,𝑗=0 | i-j | = k. 

𝑍̅: Average elevation. 

R: Point radio altitude units. 

As: Drainage area specified. 

tanβ: Local slope angle. 

VA: Variance. 

ME: Mean. 

D, F, G and H were derived according to equation of Zevenbergen and Thorne (1987). 
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Some of these terrain features are widely used in hydrological, geomorphological and 

ecological studies (Wilson & Gallant, 2000), whereas others are used more specifically for 

vegetation and forest assessment (McNab, 1989, Roberts & Cooper, 1989).  

Dataset integration 

The sample plots were geopositioned with the aim of extracting the pixel value average with 

an associated buffer of 25 m for each potential predictor. This extraction was carried out using 

R statistical software (R Core Team, 2014) and the "raster" package. Finally, a database was 

constructed with the mean biomass values for each plot: the corrected bands of the Landsat-5 

TM sensor (6 bands: 1, 2, 3, 4, 5 and 7), the vegetation indices (6 indices), the texture 

variables derived from the Normalized Difference Vegetation Index (NDVI) (24 variables), 

and the terrain variables derived from the DEM (9 variables).  

Models fitted 

The biomass of the sample plots was estimated using two different methods. In the first, the 

ordinary least squares (OLS) method was used to fit a linear model to estimate stand biomass. 

The best set of independent variables was selected by using the stepwise variables selection 

method. The second method consisted of a two-step hybrid approach. In the first step, a 

regression tree was used to classify the sample plots in homogeneous groups according to their 

biomass values by a binary rule-based method. In the second step, the ordinary least square 

method was used to fit linear models to estimate stand biomass for each group by using the 

stepwise variable selection method to select the best set of independent variables. In both 

methods, the 45 spectral, texture and terrain variables were taken into account as possible 

independent variables. 

Regression tree analysis is a non-parametric technique for the sequential partitioning of a 

data set composed of a continuous response variable and any number of potential continuous 

or categorical predictor variables, by using dichotomous criteria (Breiman et al., 1984). After 

each split, the algorithm identifies the predictor variable that provides the most effective 

binary separation of the range in the response variable. As a result, predictor variables can be 

used more than once. The regression tree analysis was performed using the "rpart" package in 

R (Therneau & Atkinson, 2012, R Core Team, 2014). This approach partitions the data set 
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sequentially, considering two-way splits at each tree node. The best split at each node t is the 

split that maximizes: 

∆𝐸𝑟𝑟(𝑠, 𝑡) = 𝐸𝑟𝑟(𝑡) − 𝑃𝐿𝐸𝑟𝑟(𝑡𝐿) − 𝑃𝑅𝐸𝑟𝑟(𝑡𝑅) 

where PL and PR are the proportions of sample plots that fall respectively to the left and 

right branch of node t, Err(tL) and Err(tR) are the error of the left and right branches, Err(t) is 

the mean square error at node t given by 1

𝑁𝑡
∑ (𝑦𝑖 − �̅�𝑡)2𝑁𝑡

𝑖=1  and �̅�𝑡 is the stand biomass 

assigned to node t, calculated as the mean of the stand biomass of all the sample plots in node 

t. 

Instead of applying stopping rules, a sequence of sub-trees was generated by growing a 

large tree and pruning it back until only the root node was left. The error of each sub-tree was 

then estimated by cross-validation, and the sub-tree with the lowest error was chosen by 

analysing the values of the complexity parameter defined by Breiman et al. (1984). 

Once the sample plots of each final node were obtained, a multiple linear model was fitted 

to estimate the stand biomass, using stepwise selection methods to select the best set of 

independent variables, with the SAS/STAT® software package (SAS Institute Inc. 2007). Two 

criteria were considered for evaluation of model performance: the coefficient of determination 

(R2) and the RMSE. The expressions of these statistics are summarized as follows: 

                         

  

where, , and  are the observed, estimated and mean biomass values, n is the total 

number of observations used to fit the model, and p is the number of model parameters. 

The main problem associated with such multiple linear models is multicollinearity. This 

refers to the existence of high correlations between certain independent variables if they 

represent or measure similar phenomena. Although the least-squares estimates of regression 

coefficients remain unbiased and consistent under the presence of multicollinearity, they are 

no longer efficient (Myers, 1990). This may seriously affect the standard errors of the 

coefficients, thus invalidating statistical tests and confidence intervals (Neter et al., 1990). One 

of the main sources of multicollinearity is the use of overfitted models that include several 
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polynomial and cross-product terms. To evaluate the presence of multicollinearity between 

variables in the models, the condition number, defined as the square root of the ratio of the 

largest to the smallest eigenvalue of the correlation matrix, was used. According to Belsey 

(1991), condition numbers between 5 and 10 indicate that multicollinearity will not be a major 

problem, while those in the range 30–100 indicate moderate multicollinearity and those in the 

range 1000–3000 indicate severe multicollinearity. Therefore, independent variables with 

condition numbers higher than 30 were not used in the models. 

Finally, since the quality of fit does not necessarily reflect its predictive performance 

(Myers, 1990, p. 168), an assessment of the validity of the models with an independent data 

set is recommended (Kozak & Kozak, 2003). Due to the difficulties associated with collecting 

such data, cross-validation was applied in this study. Validation of the model fitted to the 

complete database (method 1) and of the model of each final node was thus based on the 

values of coefficient of determination and root mean square error, using the predicted residual 

sum of squares (PRESS), i.e. each sample plot is removed in turn and the model is refitted 

using the remaining sample plots. The out-of-sample predicted value is calculated for the 

omitted sample plot in each case, and the PRESS statistic is calculated as the sum of the 

squares of all the resulting prediction errors. 

The equations obtained with the best method were finally used to generate a map of biomass 

by means of the map algebra and conditional tools of the GIS package ArcGIS 10® (ESRI Inc. 

1999-2012) from the vector vegetation layer (INEGI, 2012). 

Results 

The parameter estimates of the linear model fitted to the complete database using OLS and 

the stepwise variables selection method is shown in Tab. 4. All the parameters were significant 

at a 5% level, and up to 5 independent variables were included in the model without 

generating multicollinearity problems. The model explained 58.83% of the observed stand 

biomass variability with a RMSE of 27.88 Mg ha-1 (31.32% of the mean stand biomass). 

Based on the results of cross-validation, the model explained 51.33% of the total observed 

variability in stand biomass with a RMSE value of 30.31 Mg ha-1 (34.04% of the mean stand 

biomass). 



23 
 

 
 

The regression tree shown in Fig. 2 was generated in the first step of the second methods. 

This tree has a root node that contains all 99 sample plots with an assigned mean biomass 

value of 89.03 Mg ha-1. The limiting value of 121.5, for the variable albedo, divided these 

samples into two groups of plots. Each subgroup was then sequentially divided by the limiting 

values of the variables band 7, band 5, LAI, contrast texture with a 5x5 window and wetness 

index. 

 

Table 4. Model obtained for the total database by OLS with stepwise selection of independent 

variables (* RMSE is expressed as a percentage of mean stand biomass) 

Parameter Estimate Standard 
error 

OLS Cross-validation 
RMSE 

(Mg ha-1) R
2 RMSE 

(Mg ha-1) R
2 

Intercept 572.4939 172.2304 

27.88 
*31.32% 

0.5833 
30.31 

*34.04% 
0.5133 

SAVI -0.3673 0.1566 

Band 7 -2.7166 0.6893 

Abs. Shortw. 

solar rad. 
0.0797 0.0245 

LAI 0.0166 0.0037 

Modified SAVI -2215.8205 717.3984 

NDVI 2072.8881 628.6811 

Wetness index 3.4027 1.5666 

Contrast 7x7 0.2073 0.0926 

 

 
Figure 2. Classification tree obtained by the regression tree method n is the number of sample 

plots in each node and W is the biomass value for each node (Mg ha-1). 
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However, the problem with the regression trees method is that it tends to overfit the data, 

and therefore the most general model may not be obtained when a new set of independent data 

is used (Breiman et al., 1984). These authors suggested that once the tree is constructed, it 

should be exhaustively pruned by successively removing branches or terminal nodes that 

contribute little to explaining the response variable, to yield an appropriately-sized tree. The 

mean value of the complexity parameter (CP) defined by Breiman et al. (1984) and obtained 

by cross-validation, was used in this case to select the number of branches on the final tree, 

and the result is shown in Fig. 3 (the number of tree input variables was reduced to three, 

namely albedo, band 7 and wetness index). 

 

Figure 3. Classification tree obtained by pruning the regression tree (left) and plot of the 

relationships between the cost-complexity parameter (CP), the cross validation error (x-val 

Relative Error) and tree size (number of nodes). The dashed vertical line represents the 

maximum number of nodes (corresponding cost-complexity parameter) for which the cross 

validation error is greater than the standard error (right). 

 

Direct application of the regression tree to the data from the 99 permanent sample plots used 

in this study resulted in 56.76% of the observed variability in stand biomass being explained 

by the model, with an RMSE value of 28.57 Mg ha-1 (32.09% of the mean stand biomass). 

Once the four groups shown in Fig. 3 were obtained from the tree, linear models were fitted to 

each. The parameter estimates, their standard errors and the goodness-of-fit statistics obtained 

by cross-validation are shown in Tab. 5. 
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The intercepts of models for groups A, B and D were not significant at the 5% level, and 

therefore the models were refitted without this term. In all cases, the parameters were 

significant and the condition number values indicate no problems associated with 

multicollinearity. Analysis of the graph of the residuals plotted against the predicted values 

also indicated the absence of problems associated with variance heterogeneity or lack of 

normal distribution of the residuals (Fig. 4). 

 

Table 5. Model obtained for the final nodes of the regression tree by OLS and stepwise 

selection of independent variables (*RMSE is expressed as a percentage of mean stand 

biomass, **percentage difference between the cross-validation RMSE of the hybrid model 

compared with the same statistic obtained by cross-validation of the linear model fitted to the 

complete database) 

Group Parameter Estimate 
Standard 

error 

Cross-validation **RMSE 

reduction 

(%) 

RMSE 

(Mg ha-1) 
R

2 

A 

Abs. Shortw. solar 

rad. 
0.1004 0.0523 

19.85 
*38.57% 

0.2605 14.73% 
Entropy 3x3 -143.8093 32.8994 

Correlation 3x3 -35.0613 11.0553 

Dissimilarity 5x5 12.3776 2.9020 

Mean 7x7 1.6886 0.4856 

B 
Band 1 4.5965 0.7375 16.87 

*21.42% 
0.2591 18.97% 

Band 5 -2.1912 0.5013 

C 

Intercept 360.9605 102.8189 
26.71 

*25.76% 
0.1382 1.05% Band 1 -4.7552 1.9528 

Correlation 3x3 -137.3135 41.1643 

D 

Flow solar rad. -0.2223 0.0667 
31.38 

*20.38% 
0.6149 46.14% NDVI 745.2892 112.9641 

Stand. Dev. 7x7 -7.0717 2.0254 

 

Cross-validation of the hybrid model comprising the pruned regression tree (Fig. 3) and the 

linear models for each terminal node explained 72.96% of the observed variability in stand 

biomass, with a RMSE value of 22.59 Mg ha-1 (25.37% of the mean stand biomass). 
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Figure 4. Plot of residual values against estimated biomass for groups obtained from the 
classification tree. 

 

The spatial distribution of the biomass estimation (Mg ha-1) in the study area obtained by 

application of the classification rules included in the regression tree model and the posterior 

estimations yielded by multiple linear regression are shown in Fig. 5. The blue and yellow 

pixels reflect biomass contents of between 52 and 168 Mg ha-1, whereas the green pixels (light 

and dark) represent the highest biomass values found in temperate forest (mainly pine and 

pine-oak cover) in the study area, in accordance with INEGI’s Land Use and Vegetation chart, 

series V (INEGI 2012). 
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Figure 5. Biomass distribution in the study area. 

Discussion 

The results of the present research showed that integration of spectral information, texture 

variables derived from the NDVI and terrain indices (DEM) was essential for forest biomass 

estimation. Indeed, these variables were reported in previous studies as being closely related to 

the development and growth of this type of ecosystem and are also useful for ecosystem 

evaluation and monitoring (e.g. McNab 1993, Chen et al., 2004, Díaz-Varela et al., 2011). 

The combined use of regression trees and linear models including spectral, texture and 

terrain variables proved to be a good method of identifying patterns and defining biomass 

trends in the study area. The independent variable albedo, defined as the average solar 

reflectance (Liang, 2000), was the main discriminating factor in the regression tree, and 

highest values occurred in the areas with the lowest forest biomass. Kuusinen et al. (2014) 

obtained similar results and observed an inverse relationship between stand age and albedo, so 

that the value of this variable was lower in mature stands because of the lower level of 

incident radiation absorbed in such stands. This relationship can be used to discriminate zones 

with different levels of forest biomass. The other two discriminant variables were spectral 
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band 7 (short-wave infrared) and the topographical wetness index. Because of its spectral 

characteristics, band 7 is directly related to the moisture content of soil and vegetation 

recorded by the image. Thus, the reflectivity in this band increased as the surface wetness 

captured by the sensor decreased. In afforested areas, this band displays low reflectivity, as 

moisture levels are high in forest stands, the highest values for this band represent lower 

amounts of biomass in the classification tree. These results are similar to those reported by 

García et al. (2005) for pure stands of Pinus halepensis and Pinus sylvestris in Spain, i.e. there 

was an inverse relationship between the values for band 7 of the Landsat-5 TM sensor and the 

moisture content of the residual forest biomass. Finally, inclusion of the topographic wetness 

index in the model confirms the previous findings, as high values of this index are associated 

with high levels of moisture, which coincide with zones with high amounts of biomass. In 

various studies, use of the relationship between the wetness index and the vegetation biomass 

has enabled identification of the distribution of vegetation (e.g. Moore et al., 1993, Zinko et 

al., 2005) and of potential areas for establishing forest plantations (e.g. Holmgren 1994). 

These results indicate water availability as a key factor controlling biomass production in arid 

and semi-arid environments such as the Sierra Madre Occidental (Salinas-Zavala et al., 2002, 

Méndez-Barroso et al., 2009, Zhao et al., 2010, Forzieri et al., 2014). 

The hybrid model combining the nonparametric method of regression trees and multiple 

linear models yielded a reduction in the RMSE (25.47%) and an increase in R2 (42.14%) with 

respect to the same statistics obtained by cross-validation of the linear model fitted to the 

complete database. According to the results shown in Tab. 5, the main RMSE reduction was 

obtained in group D (46.14%), probably because this group is associated with sample plots 

with higher stand biomass values. On the other hand, the reduction in RMSE in group C was 

only 1.05%, possibly because this is the group with the lowest coefficient of variation of stand 

biomass (27.23% compared with a mean value of 48.56%). 

The parameters selected by the hybrid model included single band values in the visible 

(Band 1-blue) and mid infrared (Band 5) regions of the electromagnetic spectrum. The mid 

infrared regions have already been included and discussed in the initial (Band 5 and Band 7) 

and pruned (Band 7) regression tree  model, indicating a relationship between the biomass and 

spectral response of forest cover in the imagery bands related to water content. As expected, 

vegetation indices, such as NDVI, and other indicators of the radiation-land cover interaction, 
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such as the Absorbed Shortwave Solar Radiation, also emerged as valuable predictors of 

biomass due to their potential relationship with biomass. The relationship between remote 

sensing NDVI and biomass content, which has been the matter of discussion as strongly 

dependent on the scale of analyses and characteristics of the imagery, has nonetheless been 

regarded in the literature as one of the most widely used predictors of biomass content (Foody 

et al., 2003, González-Alonso et al., 2006). 

Interestingly, apart from these variables in the pure spectral domain, up to five variables of 

the spectral-spatial domain (i.e. texture variables Entropy 3x3, Correlation 3x3, Dissimilarity 

5x5, Mean 7x7,, Stand. Dev. 7x7) were included in the mixed model. This indicates the 

importance of the spatial arrangement of spectral values at different spatial scales (from a 3x3 

kernel corresponding with an area of 0.81 ha to a 7x7 kernel corresponding with an area of 

4.41 ha) for forest stand characterization, as reported in previous studies (Franklin et al., 2001, 

Kayitakire et al., 2006, Díaz-Varela et al., 2011, Nichol & Sarker, 2011). 

The value of R2 finally obtained with the hybrid model (0.7296) is slightly higher than that 

obtained by Sun et al. (2011) in a study carried out in the US, with high resolution LIDAR 

sensors and SAR data, to model field-measured biomass by linear models and stepwise 

selection of variables (R2, 0.71 and RMSE, 31.33 Mg ha-1) .  

Estimates obtained with sensors of medium spatial resolution usually display a low 

predictive power for each band of the sensor. Thus, Foody et al. (2003) found the strongest 

predictive relationship for biomass with a sampling network specifically designed for different 

sites (r> 0.71) based on indices obtained for tropical forest in Brazil by using Landsat TM 

data. On the other hand, Houghton et al. (2007) estimated the biomass of Russian forests by 

using data derived from a MODIS sensor and regression trees in 500x500 m plots, in which 

the percentage of variance explained by regression trees ranged from 1% to 67%. 

In the present study, the consideration of biophysical variables derived from satellite images 

along with other complementary data and the use of nonparametric multivariate techniques, 

improved the quality of the estimates, thus indicating that this is a promising line of research. 

Conclusions 

This study explored possible improvements in forest biomass prediction involving use of 

field data and geodata derived from atmospherically and topographically corrected satellite 
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images (provided by the Landsat-5 TM sensor), texture indices and DEM-derived terrain 

variables. A new approach combining the nonparametric regression trees method and multiple 

regression analysis of the groups defined in the pruned tree was compared with the usual 

method of fitting a linear model to the complete database. Cross-validation of both methods 

indicated that the proposed new approach improved the performance of the linear model. 

Moisture content was an important covariate in the final model and was directly related to 

biomass distribution in the temperate forest under study. The proposed approach deserves 

further attention in future studies aimed at estimating stand variables by using remote sensing 

data, especially for more complicated stand structures, such as mixed and uneven aged forests, 

in which the use of a mean value for each node cannot accurately represent the intra-node 

stand variation. 
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Abstract 

Combined use of new geospatial techniques and non-parametric multivariate statistical 

methods enables monitoring and quantification of the biomass of large areas of forest 

ecosystems with acceptable reliability. The main objective of this study was to estimate 

above-ground forest biomass (AGB) in the Sierra Madre Occidental (SMO) mountain 

range in the state of Durango, Mexico, by analysis of medium-resolution spectral data 

and field data collected from a network of 201 permanent monitoring sites (SPIFyS) 

installed by systematic sampling in the area in 2011. The digital levels of the images 

were converted to apparent reflectance (ToA) and surface reflectance (SR). Was used 

the algorithm M5P that constructs tree-based piecewise linear models. The fitted model 

explained 69% of the variance in the observed AGB (RMSE=42.17 Mg ha-1). The 

variables that best discriminated the AGB, in order of decreasing importance, were the 

spectral bands in the red and near-infrared (NDVI), the mid-infrared and the blue 

regions. The results demonstrate the potential usefulness of the M5P method for 

estimating AGB based in the surface reflectance values (SR). 
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Introduction 

The Sierra Madre Occidental (SMO) mountain range is of great ecological interest because 

of its environmental heterogeneity, which is attributed to the broad physiographical and 

climatic diversity in the area (Gonzalez et al., 2012). Moreover, the SMO is home to pine and 

oak species that are economically important in ecosystems in Mexico and other parts of the 

world (Sànchez et al., 2003). The SMO crosses several states in western Mexico, including the 

state of Durango (the SMO occupies 71.5% of the surface area of the state). The state of 

Durango generates between 25% and 30% of the national timber production, producing a total 

of 1.5 million·m3 of roundwood per year, and boasts forest reserves that are important sources 

of environmental services (SEMARNAT, 2011). Studies that attempt to estimate forest 

biomass in this type of ecosystem are expensive due to its large coverage and difficult access 

for direct estimation of biomass. Thus, the emergence of geospatial techniques is becoming 

increasingly relevant for estimating and monitoring forest biomass in short periods of time 

because of its low cost and acceptable accuracy (Hall et al., 2006, Fuchs et al., 2009; 

Verbesselt et al., 2010). Because of the macrospatial scale and high heterogeneity of these 

ecosystems, the quantitative data obtained often do not comply with the underlying 

assumptions of simple statistical analysis (homogeneity and normality of distribution), so 

other techniques such as logistic regression and non-parametric classification methods are 

often applied (Gibbons and Chakraborti, 2003; Barajas et al., 2007; Karjalainen et al., 2012). 

The M5 model tree (M5P) technique is a reconstruction of M5 algorithm for inducing trees of 

regression models (Quinlan, 1992). M5P is used for numeric prediction and at each leaf it 

stores a linear regression model that predicts the class value of instances that reach the leaf. To 

determine which attribute is the best to split the portion of the training data that reaches a 

particular node, the splitting criterion is used. The standard deviation of the training class is 

treated as a measure of the error at that node and each attribute at that node is tested by 

calculating the expected reduction in error. The attribute that is chosen for splitting maximizes 

the expected error reduction at that node. The main objective of the present study was to 

estimate the aboveground forest biomass (AGB) in the SMO in the state of Durango, Mexico, 

using the M5P technique and the analysis of medium-resolution satellite-based multi-spectral 

data, and field data collected from a network of 201 permanent forest growth and soil research 

sites (SPIFyS). 
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Material and Methods 

Study Area 

The study area is a mountainous zone in the state of Durango (Mexico) that forms part of 

the Sierra Madre Occidental (Figure 1). 

 
Figure 1. Location of the study area. 

The area occupied by the state of Durango represents 6.3% of the land in Mexico. The total 

area covered by the state is 12.3 million ha, of which 9.1 million ha (74.35% of the land in the 

state) is forestland managed by 11 Regional Forest Management Units (UMAFORES). A 

large part of the forestland (4.9 million ha) is occupied by temperate forest and is subjected to 

precipitation levels of between 800 and 1200 mm per year, with frost occurring in winter as a 

result of the combination of low temperatures and humid winds from the Pacific Ocean, a 

smaller area of the land (0.5 million), affected by warmer climate, is occupied by forest 

classified as rainforest (SRNyMA-CONAFOR, 2007). The mean elevation in this zone is 2650 

m above sea level. These forests have rich biodiversity and include at least 27 coniferous tree 
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species (of which 20 are Pinus species) and 43 species of Quercus, the predominant forest 

stands comprise pines and oaks, often mixed with Arbutus and Juniperus, among other tree 

species (Zhao et al., 2014). These unique forests are irregular and have been subject to 

selective harvesting for almost a century to provide a mix of services to local communities. 

This irregularity refers to the spatial arrangement of trees (vertical and horizontal irregularity) 

and the variation in the age structure of trees and stands. This structure is the result of the 

management history, which has depended on land ownership, as well as the economic and 

social changes that have taken place in the state, and also natural conditions (Wehenkel et al., 

2011).  

Field Data 

The dasometric data were obtained from 201 permanent forest growth and soil monitoring 

plots (SPIFyS) in the SMO in the state of Durango. The plots were installed during the winter 

of 2011 using the protocol developed by (Corral-Rivas et al., 2009). The data of these 

permanent sample plots are used to monitor the growth and yield of Durango’s forests. The 

plots cover the main forest types and the current diameter distributions of commercial forests 

in Durango. The plots are 50 × 50 m in size (distance was corrected by the slope) and are 

distributed by systematic sampling (with some exceptions), with a variable grid ranging from 

3 to 5 kilometers, depending on the size of the “Ejidos”. Ejidos are communal groups that live 

in rural areas and whose lands are managed with some level of governmental control. The 

sampling plots are intended to be re-measured at five-year intervals. Among other variables, 

tag number, species code, breast height diameter (measured in cm at 1.3 m above ground 

level), total tree height (m), height to the live crown (m), azimuth (°) and radius (m) from the 

center of the plot of all trees equal or larger than 7.5 centimeters (cm) in diameter were 

recorded. The database used here includes measurement data from 31,979 trees. 

The aboveground biomass in each of the SPIFyS plots was estimated using specific 

allometric equations developed by [16] for the same study area. Depending on the species, the 

goodness of fit statistics ranged between 0.82 and 0.97 of the coefficient of determination (R2) 

and the root mean square error (RMSE) between 22.68 and 133.68 kg. 

The main descriptive statistics for the total aboveground biomass per hectare in the study 

sites are summarized in Table 1. 
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Table 1. Descriptive statistics of the total aboveground biomass per hectare in the 201 

permanent forest growth and soil monitoring plots (SPIFyS). 

Variable Mean Standard Deviation Minimum Value Maximum Value 

Number of stems per ha 645 271.84 224 2264 

Stand basal area (m2·ha−1) 23.44 8.06 8.21 54.83 

Dominant height (m) 17.47 5.08 6.86 30.60 

Stand biomass (Mg·ha−1) 141.64 75.01 27.73 469.42 

 

Tree Abundance by Species Group (ASG) 

The tree abundance (number of trees per group of species per plot) was estimated for 

posterior analysis in this study. A total of seventy-two different tree species were grouped in 

four groups of species as they present similar growth patterns: (P) Pinus species (16), (OC) 

other conifers species (12), (Q) oaks species (26), and (OB) other broadleaves species (18). 

Source of Spectral Data 

The data used for the study were obtained from six Landsat 5 TM (Thematic Mapper) 

satellite images captured between March and May 2011 and covering all of the SMO within 

the state of Durango (path/row: 30/44, 31/42, 31/43, 31/44, 32/42 and 32/43) (USGS, 2011). 

This satellite platform, of medium spatial resolution, operates in seven bands of the 

electromagnetic spectrum: blue (bandwidth 0.45–0.52 µm), green (bandwidth 0.52–0.60 µm), 

red (0.63–0.69 µm), near infrared (0.78–0.89 µm), mid infrared (1.55–1.75 µm) and far 

infrared (2.08–2.35 µm). These bandwidths correspond, respectively, to bands 1, 2, 3, 4, 5 and 

7 of the Landsat-5 TM satellite (NASA, 2011). Band 6, designed for the thermal mapping and 

soil moisture, was not considered because of its lower (120 m) spatial resolution. 

The satellite images were digitally pre-processed by radiometric correction techniques, 

according to the procedures suggested by (Greenle, 1993; Chuvieco, 2010). The images are 

produced by USGS with a rectification using a cubic convolution geometric correction for discrete 

data (level L1T), with a root mean square error (RMSE) of less than 1 pixel, thus making them 

suitable for digital image processing (Keys, 1981). The digital levels (DLs) were converted to 

radiance values to generate images that were calibrated with the minimal radiance (Lmin) and 
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maximal radiance (Lmax) values for each band of the sensor (Eastman, 2012). The radiance was 

subsequently converted to apparent reflectance (Top of Atmosphere (ToA)) with the aim of 

converting the original values of each image into standard physical variables that are comparable 

over time for the same sensor (Greenle, 1993). This process was carried out with IDRISI® Selva 

software (Eastman, 2012) and the ATMOS algorithm, which fits the radiometric effect on 

considering the solar elevation, yielding an image with reflectance values (0–1). 

Furthermore, the same images were downloaded from the National Landsat Archive 

Processing System (NLAPS), corresponding to the product Landsat 4–5 Thematic Mapper 

level 1 of reflectance on surfaces (SR), radiometrically and atmospherically corrected, and 

processed through the Standard Landsat Product Generation System (LPGS) using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (USGS, 2011). 

Bands 1, 2, 3, 4, 5 and 7 (Band 1 to Band 7) of Landsat-5 TM were used, Band 6 was not 

used, because of its thermal characteristics (USGS, 2011). The Normalized Difference 

Vegetation Index (NDVI) was also calculated, with the aim of compensating the factors that 

influence the images in relation to biomass estimation, such as the illumination conditions, the 

slope and the orientation of the surface. The use of NDVI calculated for ToA and SR, as a 

predictor variable to model AGB has been successfully reported in previous studies (Gasparri 

et al., 2010; Liang et al., 2012; Zhu and Liu, 20015). 

 
 RNIR

RNIRNDVI



  (1) 

where NIR is the spectral band in the near infrared region (Band 4) and R the band in the red 

region (Band 3). 

Integration of Data Files 

Once the images were obtained by the previously mentioned processes (ToA and SR 

spectral bands), a mosaic was constructed with six of the scenes covering the SMO. Posterior 

geolocation of the SPIFyS in the mosaic enabled extraction of the information at the pixel 

level by bilinear interpolation. ArcGIS 10® software (ArGIS, 2012) was used for this 

extraction. ToA and SR values were integrated in a database together with the extracted total 

aboveground biomass (Mg·ha−1) as inputs for the model. 
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Fitted Model 

We used a machine learning technique to estimate the AGB at stand level. M5P technique 

combines a conventional decision tree with the possibility of linear regression functions at the 

nodes. First, a decision-tree induction algorithm is used to build a tree, but instead of 

maximizing the information gain at each inner node, a splitting criterion is used that 

minimizes the intra-subset variation in the class values down each branch. The splitting 

procedure in M5P stops if the class values of all instances that reach a node vary very slightly, 

or only a few instances remain. Second, the tree is pruned back from each leaf. When pruning, 

an inner node is turned into a leaf with a regression plane. Third, to avoid sharp discontinuities 

between the subtrees, a smoothing procedure is applied that combines the leaf model 

prediction with each node along the path back to the root, smoothing it at each of these nodes 

by combining it with the value predicted by the linear model for that node. Techniques devised 

by (Quinlan, 1992) for their classification and regression trees system are adapted in order to 

deal with enumerated attributes and missing values. All enumerated attributes are turned into 

binary variables so that all splits in M5P are binary. As to missing values, M5P uses a 

technique called “surrogate splitting” that finds another attribute to split on in place of the 

original one and uses it instead (Breiman et al., 1984; Quinlan, 1992; Wnag and Witten, 

1997). 

In this study, in a first stage, the six spectral bands of the Landsat 5 TM sensor (1, 2, 3, 4, 5 

and 7) and the NDVI were analyzed with the algorithms ToA and SR to estimate AGB. In a 

second stage, its spectral variables (SR) were evaluated with variables that incorporate aspects 

of forest structure (ASG). All analyses were performed with M5P technique implemented into 

the WEKA open source software (Hall, 1999). 

To compare the performance of the models, the coefficient of determination (R2), the root 

mean squared error (RMSE) and the root relative squared error (RRSE) were used as 

goodness-of-fit criteria for evaluating model performance and were expressed as follows: 

 

 











 n

i
ii

n

i
ii

yy

yy
R

1

2

1

2

2
ˆ

1  (2) 



43 
 

 
 

 

pn

yy
RMSE

n

i
ii







1

2ˆ
 

(3) 

 

 











 n

i
ii

n

i
ii

yy

yy
RRSE

1

2

1

2

ˆ

ˆ
 (4) 

where ,  and  are the observed, estimated and mean values of AGB, respectively, n is 

the total number of observations used to fit the model, and p is the number of model 

parameters. 

The selected model was applied for mapping AGB in the SMO area using ArcGIS 10® 

software (ArGIS, 2012) 

Results 

The decision tree generated by the M5P technique for ToA, SR and SR with ASG variables 

were implemented in WEKA software, using the pixel level values extracted from the images 

of the 201 SPIFyS plots is shown in Figure 2. 

 

iy iŷ y
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Figure 2. Decision tree obtained using the M5P technique with ToA (upper), SR (middle) 
and SR with ASG variables (bottom). (Band 1 to 7): of Landsat 5 TM (Thematic Mapper) 
satellite, (NDVI): normalized difference vegetation index, (OB) tree abundance of other 
broadleaves species, and (Pinus) tree abundance of pines. 

In accordance with the hierarchical structure of the decision trees, the following variables 

that best discriminated or predicted the AGB, in order of decreasing importance were, for 

ToA: Band 7, Band 3, Band 1, NDVI and Band 5, for SR: NDVI, Band 1 and Band 7, and for 

SR with ASG: NDVI, OB, Band 4 and tree abundance of pines. Categorization of the trees 

continued following the path determined by the responses to the questions at the internal 

nodes, until reaching a terminal node, where the predetermined label will be that assigned to 

the classification pattern—in this case, the pixel values for AGB estimation. The Table 2 show 

the goodness-of-fit statistics derived from the M5P technique with ToA values explained 54% 

(R2) of the observed variability in the AGB of the 201 research plots, with a RMSE of 50.47 
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Mg·ha−1. SR model explained 69% (RMSE = 42.17 Mg·ha−1), and when including the ASG 

variables the explanation of the variance increases to 73% (RMSE = 39.40 Mg·ha−1). 

Table 2. Summary of the goodness-of-fit statistics for estimation of the AGB. 
Statistics ToA SR SR with ASG 

R2 0.54 0.69 0.73 

RMSE 50.47 42.17 39.40 

RRSE 67.45 56.36 52.66 

Graphical analysis of the residual values and the observed values plotted against the 

predicted values of AGB did not reveal any important problems in relation to heterogeneity of 

the variance or lack of normal distribution of the residuals, with the exception of a slight trend 

of underestimation for high AGB (Figure 3). 

The spatial distribution of the estimated AGB (Mg·ha−1) in the SMO area obtained by the 

application of the classification rules included in the regression tree model (M5P) for SR 

variables is shown in Figure 4. The lighter color pixels represent the lowest amounts of AGB, 

below 75 Mg·ha−1, whereas the dark green pixels represent the largest amounts of AGB, 

which consistently correspond to the most dense areas of temperate forest. Calculated mean 

amount of AGB for the study area was around 106 Mg·ha−1. 

The total AGB content estimations from the MP5 technique for SR variables for the 

analyzed forest management units are shown in Table 3. The highest mean value of AGB was 

observed in the UMAFOR 1006 (Municipally of San Dimas) with 148.98 Mg·ha−1 and a total 

estimation of 64,033,008.59 Mg. This zone encompasses the largest area of forestland and 

therefore the largest amount of AGB. On the other hand, the lowest amount of AGB was 

observed in the UMAFOR 1001 with a mean estimate of 78.66 Mg·ha−1, making it the forest 

region with the lowest density out of the eleven forest management units considered in this 

study. 
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Figure 3. Graphs showing the distribution of the residuals and of the observed AGB 
values with ToA (upper), SR (middle) and SR with ASG variables (bottom). 
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Figure 4. Spatial distribution of the total AGB in the SMO, state of Durango, Mexico. 
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Table 3. Estimation of AGB for the regional forest management units in the SMO, state of 

Durango, Mexico. 

UMAFOR 

Mean 

AGB  
Surface Area  Total AGB 

(Mg·ha−1) (ha) (Mg) 

1001 78.66 423,990.00 33,350,319.02 

1002 85.58 351,498.00 30,079,977.18 

1003 107.10 126,054.00 13,500,870.12 

1004 99.54 318,104.00 31,663,478.70 

1005 125.38 424,753.00 53,256,210.80 

1006 148.98 429,806.00 64,033,008.59 

1007 88.29 253,619.00 22,393,159.18 

1008 111.12 373,308.00 41,482,686.80 

1009 120.90 162,075.00 19,594,636.15 

1010 111.49 358,944.00 40,017,365.50 

1011 84.97 262,488.00 22,303,475.59 

TOTAL 105.64 3,484,639.00 283,143,798.25 

Discussion 

The results of the present study demonstrate that the data acquired by a medium spatial 

resolution (Landsat) sensor are potentially useful for estimating AGB in structurally complex 

forests, such as those in the SMO in the state of Durango (Mexico), with satisfactory results and 

low cost. The deterministic predictors were the bands belonging to the blue, green and most red, 

near and mid infrared spectral regions. This finding was similar to that reported by (Jakubauskas, 

1996), who demonstrated that reflectance in the red and near infrared regions yielded good 

predictions for AGB estimation in forest zones of the Yellowstone National Park, USA. In the 

present study, the model tended to underestimate AGB values above approximately 250 Mg·ha−1. 

This might possibly be due to the saturation of NDVI, which is the most influential variable in 

predicting biomass for high values. In this sense, several studies have similarly found that the 

NDVI loses its sensitivity to dense vegetation because of the saturation in red and near infrared 
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wavelength in measuring and monitoring plant growth, vegetation cover and biomass production 

from satellite data (Huete et al., 1997; Lu et al., 2004; Mutanga and Skidmore, 2004). Models 

fitted ToA, SR, and SR with ASG, respectively, showed an increasing capacity to overcome these 

NDVI saturation problems. 

Furthermore, (Fassnacht et al., 1997) concluded that the vegetation indices or individual 

bands, which include one or more bands in the infrared spectrum, provide satisfactory 

descriptions of zones occupied by conifer or broadleaf species. Moreover, in the case of SR, 

which was better than ToA, the contribution of Band 1 in two terminal nodes of the M5P 

model is associated with the structural variability of the canopy (Palestina et al., 2015). Günlü 

et al. [2014] found that the reflectance from Landsat TM satellite Band 1 was the best 

predictor of AGB (R2 = 0.465, RMSE = 91,836 t·ha−1), given the structural conditions of the 

canopy and understory, as the reflectance from this band increased as the AGB increased. In 

the present study, the result of the M5P analysis with SR spectral bands (R2 = 0.69, RMSE = 

42.17 Mg·ha−1) was higher to that reported by Houghton et al. (2007), who analyzed data from 

the MODIS sensor (resolution, 500 m) and forest inventory data using the non-parametric Random 

Forest (R2 = 0.61) method to map forest biomass in Russia. 

In a recent study, Tian et al. (2014) used the non-parametric k-nearest neighbours (k-NN) 

technique to produce an optimized model (R2 = 0.59, RMSE = 24.92 ton·ha−1) from Landsat-

TM images of a sample of 133 plots, with topographic correction based on sun-canopy-sensor 

(SCS + C). Likewise, Hall, [30] used Landsat 5 (TM) images rectified by SCS+C radiometric 

correction and compared the performance of the k-NN method and support vector machine 

(SVM) method for estimating AGB. They found that k-NN performed better (R2 = 0.54, 

RMSE = 26.62 ton·ha−1) than SVM (R2 = 0.51, RMSE = 27.45 ton·ha−1). 

In general, most previous studies report significant relationships between AGB and the 

reflectance values yielded by each sensor. The reliability was within the range reported in 

diverse research studies that estimate AGB from medium resolution spectral data, from 

Landsat and SPOT, which often yield R2 values between 0.50 and 0.70 with absolute errors of 

the estimates of between 30 and 60 Mg·ha−1 (Hall et al., 2006; Foody et al., 2001; Tomppo et 

al., 2002; Zheng et al., 2004; Chen et al., 2009; Castillo et al., 2010; Tian et al., 2012; Guoa et 

al., 2014). The present study also shows that incorporation of spectral data and tree abundance 

estimated by species group in mixed and uneven-aged forests (SR with ASG), such as the 
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SMO, can increase the level of estimation of the AGB (R2 = 0.73, RMSE = 39.40 Mg·ha−1). In 

this sense, previous studies have reported significant variations in forest biomass estimation 

between different ecological zones, tree species, ages, density and management types (Henry 

et al., 2011; De-Meiguel et al., 2014; Zou et al., 2015). 

In other studies (Richter et al., 2009; Hantson and Chuvieco, 2011; Balthazar et al., 2012) 

several authors have concluded that the spectral data derived after atmospheric and 

topographic correction may improve the accuracy of the biomass estimation, irrespective of 

the statistical method used. As the areas being monitored are mountainous zones, the quality 

of the data is negatively affected by the reflectance between sunny and shaded slopes. 

Interactive parameter fitting in the topographical correction methods may improve the quality 

of the spectral data and of the AGB estimates (Hantson and Chuvieco, 2011; Balthazar et al., 

2012). 

Conclusions 

In the present study, we estimated the AGB in the SMO in the state of Durango, Mexico, 

using the M5P technique and the analysis of medium-resolution satellite-based multi-spectral 

data, and field data collected from a network of 201 SPIFyS. 

The findings show that the M5P method is potentially useful for estimating forest biomass. 

Data from the infrared channel of the Landsat-5 TM sensor proved best for discriminating or 

predicting AGB. 

The surface reflectance values (SR) in comparison with atmospheric correction from the 

sensor (ToA), was best for the estimation of AGB. 

The results of this study indicate that performing atmospheric corrections and considering 

variables related to forest structure (SR with ASG variables) can help to solve problems of 

saturation of NDVI for high values of biomass. 
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Abstract  

Machine learning combines inductive and automated techniques for recognising patterns. 

These techniques can be used with remote sensing datasets to map AGB with an acceptable 

degree of accuracy for evaluation and management of forest ecosystems. Unfortunately, 

statistically rigorous comparisons of machine learning algorithms are scarce. The aim of this 

study was to compare the performance of  three most common non-parametric machine 

learning techniques reported in the literature (Support Vector Machine [SVM], k-nearest 

neighbor [kNN] and Random Forest [RF]) with that of the parametric multiple linear 

regression (MLR) technique, for estimating AGB from Landsat-5 Thematic Mapper (TM) 

spectral reflectance data, texture features derived from the normalized difference vegetation 

index (NDVI) and topographical features derived from a digital elevation model (DEM). The 

results obtained for 99 permanent sites (for calibration/validation of the models) established 

during the winter of 2011 by systematic sampling in the state of Durango (Mexico) showed 

that SVM performed best once the parameterization had been optimized. Otherwise, SVM 

could be outperformed by RF. However, the kNN yielded the best overall results in relation to 

the goodness-of-fit measures. The findings confirm that non-parametric machine learning 

algorithms are powerful and precise regression tools for estimating AGB with datasets derived 

from sensors with medium spatial resolution.  
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Introduction 

Forest biomass plays an important role in the global climate system as forest ecosystems 

absorb approximately one twelfth of the Earth’s atmospheric carbon stocks every year (Malhi 

et al., 2002), and much of this carbon is stored as aboveground biomass (AGB). The 

importance of forest biomass has been underlined by the United Nations Framework 

Convention on Climate Change (UNFCCC), which has identified AGB as an Essential 

Climate Variable (GCOS, 2010). Moreover, quantification of AGB and modelling of the 

associated dynamics are important to support decision-making models in different fields, 

including energy and materials provision for human use (FAO, 2001, 2006), forest 

fragmentation (e.g. Malhi and Phillips, 2004) and biodiversity conservation (e.g. Bunker et al., 

2005). Accurate monitoring of forest biomass and how it changes at local to global scales is 

therefore of critical importance towards a better understanding of these processes (Lu, 2006; 

Hartig et al., 2012; Le Toan and Quegan, 2015). 

The most accurate method of estimating forest biomass is based on field measurements, 

however, estimating biomass in large areas is not an easy task and is hindered by the high 

costs (both time and money) associated with fieldwork (Lu et al., 2016). 

Remote sensing has been shown to be a practical option that helps to overcome these 

limitations as it enables to get information of forest in large areas with reasonable effort. This 

is now the primary data source for large-scale biomass estimation (e.g. Andersen et al., 2011, 

Lu et al., 2016). Over the past few decades, the so-called passive sensors (i.e. sensors that use 

the solar radiation reflected or emitted by the objects detected at the earth’s surface) have been 

used to estimate AGB (e.g. Lu et al., 2012; Frazier et al., 2014). Considering the advantages 

and limitations of different remote sensing images, the medium-resolution (pixel size, 30 m) 

Landsat-5 TM sensor is one of the most widely used for biomass estimation (e.g. Agarwal et 

al., 2014; Pflugmacher et al., 2014, Dube and Mutanga, 2015, Zhu and Liu, 2015). The 

advantages of using the Landsat-5 TM sensor are that numerous historical spatio-temporal 

archives are available (images since 1972) and the Landsat data is free of economic cost for 

users than high resolution sensors, particularly for analysis of large areas. For a review of 

Landsat imagery-based AGB estimations, see Wu et al. (2016). 

Independently of the type of sensor used, model accuracy and error estimation vary in 

relation to a series of factors such as the structure of the field data and the statistical 
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techniques used (Ghosh et al., 2014). The most common model used in estimating forest 

biomass from remote sensing data is the regression-based model (e.g. Tian et al. 2012; Lu     

2012; Næsset et al. 2013), however, the accuracy of estimates obtained with small numbers 

of sample plots or when there is a weak linear relationship between variables and biomass is 

rather low (Lu et al., 2016). Non-parametric modelling approaches, which make no 

assumptions about the statistical distributions of the original data and relationships between 

predictor and response variables, have also been used to relate AGB and remotely sensed 

features. Various recent studies have explored the use of non-parametric approaches for 

estimating AGB with remote sensing data (e.g. Breidenbach et al., 2012; Mutanga et al., 2012; 

Jung et al., 2013; Fassnacht et al., 2014).  

Machine learning involves different techniques (mainly non-parametric) that focus on 

automated and inductive learning to recognise patterns (Cracknell and Reading, 2014) in data 

(e.g. patterns in remote sensing data related to AGB in a set of located plots), once the pattern 

is learned, it can be applied to yield a prediction or classification in areas where it is not 

possible to carry out fieldwork to quantify an objective variable (e.g. AGB). In the last decade, 

various machine learning techniques such as Support Vector Machine (SVM), k-nearest 

neighbour (kNN) and Random Forest (RF) have been used to develop predictive models of 

AGB in large areas. Thus, Shataee (2013) showed that kNN performed better than SVMs, RF 

and Artificial Neural Networks (ANN) for estimating biophysical variables such as basal area. 

More recently, Garcia-Gutierrez et al. (2015) showed that SVM models performed best for 

estimating forest variables from Light Detection and Ranging (LIDAR), while Wang et al. 

(2016) showed that RF outperformed SVM and ANN for estimating wheat biomass from 

remote sensing data. For a more complete review of research being carried out to retrieve 

vegetation biomass from remote sensing data using machine learning methods, see Ali et al. 

(2016). 

The goodness-of-fit of models derived from spectral data is usually evaluated by the 

coefficient of determination (R2) and the root mean square error (RMSE). These measures 

report the performance of the model in predicting the data used to fit the model, however, 

because the quality of the fit does not necessarily reflect the quality of the prediction, 

assessment of their validity is often needed to ensure that the predictions represent the most 

likely outcome in the real world (Yang et al., 2004). The only method that can be regarded as 
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‘‘true’’ validation involves the use of a new independent data set (Pretzsch et al., 2002; Yang 

et al., 2004), however, the scarcity of such data forces the use of alternative approaches, such 

as Cross Validation (CV) to enable evaluation of the quality of a particular fitting technique 

and minimize the risk of overfitting (Molinaro et al., 2005). Unfortunately, most studies 

involving estimation of AGB do not use CV as part of the model development.  

For rigorous comparison of the performance of different machine learning techniques, the 

study should also be accompanied by statistical validation of the results within a statistical 

framework (i.e. not merely calculating statistics such as R2 or RMSE). Although this is well 

known in the field of machine learning (García et al., 2010), this type of validation is not 

common in remote sensing, even though machine learning plays an important role in many 

biomass estimation studies. This fact may have led to some degree of discordance in the 

scientific literature, in which we can find examples of kNN, SVM and RF outperforming each 

other (Shataee 2013; Garcia-Gutierrez et al., 2015; Wang et al., 2016). 

The objective of this study was to analyze and statistically compare the performance of 

three non-parametric techniques (SVM, kNN and RF) and the parametric Multiple Linear 

Regression (MLR) technique for estimating AGB. The techniques were tested with Landsat-5 

TM surface spectral reflectance data, texture features derived from the normalized difference 

vegetation index (NDVI) and topographical features derived from a digital elevation model 

(DEM) in the Sierra Madre Occidental (state of Durango, Mexico). The results obtained with 

each technique were compared after application of CV and posterior statistical validation of 

the mean rankings obtained for each. 

Materials and Methods 

Study area 

The study site is located in the Sierra Madre Occidental, in the north of the state of 

Durango (Mexico), and covers an area of 1,142,916 ha (Figure 1). The climate is humid 

temperate, with rainfall in summer (relative humidity, 50.1%). The average temperature 

ranges from 8 to 20 °C and the annual precipitation from 400 to 1200 mm. The average 

altitude above sea level in this area is 1,900 m. The vegetation comprises pine, oak, Douglas 

fir, pine-oak and oak-pine forest, according to the description in the Land Use and Vegetation 

Cover Chart, scale 1:250,000, Series V (INEGI, 2012). The forests are basically mixed and 

uneven-aged pine-oak stands, with a canopy cover ranging from 32 to 100%. These forests 
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have been subject to selective harvesting for almost a century to provide a mixture of services 

to local communities. This structure is the result of the management history, which has 

depended on land ownership and the economic and social changes that have taken place in the 

state, as well as natural conditions (Wehenkel et al., 2011). 

 

 

Figure 1. Geographical location of the study site and sample plots used in the study. 
 

 Dataset 

 Field data 

A network of 99 permanent sampling plots (Sitios Permanentes de InvestigaciÃs¸n Forestal 

y de Suelos, SPIFyS) was established during the winter of 2011, following the method 

described by Corral-Rivas et al. (2009). The plots were located by systematic sampling (with 

some exceptions to avoid non forested areas) of a grid of equidistant points separated by three 
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or five km, depending on the orography of the study area. In each plot (squares of side 50 m), 

all species of trees were recorded and the diameter at breast height (cm) and total height (m) of 

all standing trees were measured. Species-specific individual tree models developed by 

Vargas-Larreta (2013), were used to estimate the total AGB of field plots by tree value 

aggregation. The R2 and the RMSE of the models used ranged from 0.87-0.99 and 22.8-95.2 

kg respectively. 

Summary statistics including number of observations, mean, standard deviation, minimum and 

maximum values of AGB per hectare are summarised in Table 1. 

 

Table 1. Total biomass statistics (expressed in Mg ha-1) 

No. of 

observations 
Mean 

Standard 

deviation 

Minimum 

value 

Maximum 

value 

99 89.03 43.45 2.70 234.03 

 

Spectral data 

The spectral data were derived from a satellite image Landsat-5 TM obtained in April 2011 

(path 32, row 42) and covering the entire study area (available from the US Geological Service 

webpage, at http://glovis.usgs.gov/). Landsat-5 TM data have a spatial resolution of 30m with 

a revisit period of 16 days. Bands 1, 2, 3, 4, 5 and 7 (level L1T) of Landsat-5 TM were used in 

the present study, band 6 was not used, because of its thermal characteristics, its coarse spatial 

resolution (120 m) and the low contrast in the forest area (NASA, 2011). The satellite images 

were radiometrically, atmospherically and topographically corrected using the ATCOR3® 

module, regarded as particularly suitable for mountainous zones. The ATCOR3® module 

(Geosystems 2013) first calculates the radiance at sensor level (W sr-1 m-2) from the image 

pixel. Several input parameters were required for this calculation and were retrieved from the 

image metadata (header file): date of acquisition, scale factors, geometry (solar zenith angle 

and solar azimuth) and other information about the sensor calibration file (“gain and bias”). 

Other parameters were adjusted by taking into account the characteristics of the input datasets 

and the conditions of the imagery dates, e.g. visibility (35 km), pixel size of the DEM (15 m), 

aerosol type (rural), among others. As the image was cloudless and no suitable water vapour 
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bands were available, dehazing/cloud removal and atmospheric water retrieval settings were 

kept as “default”, which, in this case, is recommended by the ATCOR3® User Manual 

(Geosystems, 2013). The corrections were implemented with the ERDAS® IMAGINE® 2013 

software (ERDAS, Inc. 2014). A number of vegetation indices were computed from the 

atmospherically and topographically corrected image bands and included in the biomass 

estimation models for evaluation as possible regressor features (Table 2). 

Texture parameters 

The texture features homogeneity, contrast, dissimilarity, mean, standard deviation, 

entropy, second order angular moment and correlation (Haralick et al., 1973) were calculated 

from the NDVI image based on grey level co-occurrence matrices, with the aim of including 

information combining the spatial and spectral domain of the remotely sensed imagery in the 

biomass estimation models. We used NDVI texture features rather than each spectral band of 

Landsat-5 TM to avoid saturating high biomass values (Mutanga and Skidmore, 2004). As it 

also becomes more difficult to obtain an optimal subset as the number of attributes increases, 

we therefore aimed for a compromise between quantity and quality. The features were 

calculated using PCI Geomatica2013® software (PCI Geomatics Inc., 2013) and three different 

scales of operation were considered by using moving window sizes of 3x3, 5x5 and 7x7 pixels 

(Table 2).  

Terrain variables  

Terrain features are directly related to forest species composition, tree height growth and 

other forest stand variables, enabling these to be modelled (McNab, 1989, Roberts and 

Cooper, 1989). First and second order terrain features were therefore derived from the 5x5 low 

pass filtered Digital Elevation Model (DEM) of the study area with a spatial resolution of 15 

m. The DEM was derived from LIDAR data and corresponds to an array of elevation data 

interpolated to 15 m resolution from the coordinates of the last return of the pulses emitted 

(INEGI, 2014).  The final set of features derived from Landsat-5 TM sensor and from the 

DEM, which were used as possible predictors (independent variables) for estimating AGB 

(which played the role of dependent variable), are shown in Table 2.  

Finally, the sample plots were geopositioned with the aim of extracting the pixel value average 

with an associated buffer of 25 m for each described feature, to obtain a database with the 
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mean biomass values and the associated features for each plot. The extraction was carried out 

using R statistical software (R Core Team, 2014) and the “raster” package.  

Comparison framework 

Machine learning techniques 

Three non-parametric machine learning techniques and one parametric technique were 

applied to data from the study area in order to compare their performance: (i) k-Nearest 

Neighbour (kNN), (ii) Support Vector Machine (SVM), (iii) Random Forest (RF) and (iv) 

Multiple Linear Regression (MLR). All these techniques were used to estimate AGB using as 

possible predictors the variables included in Table 2. 

The parametric MLR technique is the most commonly used in this kind of study (Fassnacht 

et al., 2014). Moreover, this type of model is easy to understand and is widely used in most 

scientific disciplines. However, unlike the non-parametric approaches, MLR relies on certain 

assumptions, such as the fundamental least squares assumption of independence and equal 

distribution of errors with zero mean and constant variance, which can be violated by factors 

such as non-normality of variables, multicollinearity of variables and heteroscedasticity of 

error variance. 

Nearest Neighbour (NN), a well-known machine learning technique used in remote sensing 

(Shataee, 2013), makes a prediction by using the information about the neighbours of the 

instance to be regressed (Cover and Hart, 1967). The NN depends on a parameter, usually 

called k, which determines the number of neighbours used by the algorithm. The technique is 

therefore usually called kNN when more than one neighbour is used. Although the idea behind 

this type of technique is quite intuitive, the resulting model is not easy to interpret as all results 

depend on a training set itself.   
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Table 2. Variables used in machine learning for biomass estimation  

 Variable Reference 

Vegetation Index 

NDVI Normalized Difference Vegetation 
Index Rouse et al. (1974) 

MSAVI2 Modified Soil-adjusted Vegetation 
Index Qi et al. (1994) 

SAVI Adjusted Soil Vegetation Index Huete (1988) 

IAF Leaf Area Index Baret and Guyot (1991) 

ALB Albedo Asrar (1989) 

Fpar Fraction of Photosynthetically 
Active Radiation Asrar et al. (1984) 

FSR Flow Solar Radiation Brutsaerts (1975) 

Texture (NDVI) 

HOL Homogeneity 

Haralick et al. (1973) 

CO Contrast 

DI Dissimilarity 

ME Mean 

SDT Standard Deviation 

EN Entropy 

ASM Angular Second Moment 

CR Correlation 

Terrain (DEM) 

Altitude Altitude  

B Slope  

TRASP Transformed Aspect Roberts and Cooper (1989) 

TSI Terrain Shape Index McNab (1989) 

WI Wetness Index Moore and Nieber (1989) 

PC Profile curvature 

Wilson and Gallant (2000) PLC Plan curvature 

C Curvature 

 

SVMs have been developed from artificial neural networks (Cortes and Vapnik, 1995) and 

have been used in many scientific fields (e.g. Abedi et al., 2012, Bayoudh et al., 2015, Garcia-

Gutierrez et al., 2015). SVM models are developed by a set of vectors (or hyperplanes if 

greater dimension is requested) that separate instances of different labels (classification) or 

minimize the mean error (regression). Kernel functions are used to overcome the limitations 
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associated with linear separability in SVM models. Appropriate selection of the kernel 

function and the kernel regularization parameters is important in relation to the SVM model 

behaviour, which can make this type of technique more difficult to implement for users. As 

with kNN, the models produced using SVM are more difficult to interpret than those of MLR. 

RF is not exactly a classification or regression technique, but a combination of other 

techniques, mainly regression or classification trees (Breiman, 2001). The success of this 

technique is based on the use of numerous trees developed with different independent 

variables that are randomly selected from the complete original set of features (e.g. 

Deschamps et al., 2012, Wang et al., 2016). The number of predictors used by trees and the 

number of trees are established by the users. 

WEKA open source software (Hall et al., 2009) was used to implement all of the 

techniques compared. Thus, Linear Regression was used for MLR, IBk for kNN, SMOreg with 

Polynomial and Gaussian kernels for SVM and an adaptation of the RF implementation of 

WEKA for regression (using M5P as the basic regression technique for the development of 

this ensemble). 

Feature selection, parameterization and validation 
 

In machine learning, spurious data features must be removed before a model is generated 

(Hall, 1999). Thus, the variables that are potentially most important are selected. Some 

techniques (e.g. SVM and RF) carry out this selection, but others may be seriously affected by 

excessively large combinations of variables (e.g. the Hughes effect [Hughes, 1968] in kNN 

and multicollinearity in MLR). This is a common situation in this type of analysis because of 

the large set of predictor variables that can be calculated from remote sensing data (Packalén 

et al., 2012). Moreover, correct functioning of different machine learning techniques depends 

on a proper parameterization (set-up of their parameters, i.e. variables that modify the 

behaviour of the machine learning techniques). In this study, both of these steps (feature 

selection and parameterization) were carried out via a metaheuristic search (Samadzadegan et 

al., 2012). From the possible metaheuristic techniques (i.e. a method of optimization that 

provides a near-optimal solution in computationally affordable time), we selected an 

evolutionary algorithm which is illustrated in Figure 2. The algorithm starts with a population 

of random solutions (Initial Population in Figure 2) called individuals and ranks them 
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according to fitness of the individuals (Fitness Sorting in Figure 2). In the present study, the 

fitness was evaluated by the RMSE obtained with a training set. A new population of 

individuals is then created by mating parents (random selection of coefficients shown in 

Figure 2), selected with a probability proportional to their fitness, and later mutating the new 

individuals with a given probability (in this case, a value will be randomly selected and 

changed to a new random value as can be seen in Figure 2) . 

The general scheme described in Figure 2 was modified slightly according to the specific 

regression technique. Thus, we used a specific design for MLR (see García-Gutiérrez et al., 

2014) and an adaptation of the genetic algorithm of Huang and Wang (2006) for the non-

parametric techniques (kNN, SVM and RF). In the kNN method, pure selection (coefficients 

associated with each feature as 1 or 0 depending on whether the predictor is selected or not) 

was substituted by weighting each attribute (real value between 0.0 and 1.0), which enables 

better adaptation of the algorithm to the characteristics of kNN (see Mateos et al., 2012). In 

SVMs, the type of kernel is another parameter to be optimized and had two possible values 

(Radial Basis Function and Polynomial). The parameters optimized for each machine learning 

technique are included in Table 3. 
 

Table 3. Intervals used by the evolutionary algorithm to search for the different optimal 

parameters. 
 Technique Name Minimum Maximum 
kNN  k 1 20 
SVM  EPSILON 0 0.2 
SVM Gaussian-kernel-only GAMMA 0.01 2.0 
SVM Polynomial-kernel-only EXP 1 5 
SVM Polynomial-kernel-only C 1 100 
RF  NT 1 100 
RF  NF 1 5 

Where: 
K= Number of neighbours 
C= Penalty factor imposed in SVM per instance of misclassification in training. 
NT=Number of trees that form each ensemble. 
NF= Number of attributes selected for constructing each tree 
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Figure 2. Description of the evolutionary procedure used to determine the best methods for 
parameterization and feature selection. 
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For comparison of the different techniques, validation was based on the Leave-One-Out CV 

technique. This is a special case of k-fold CV in which k is equal to the number of 

observations and a prediction is obtained as many times as there are observations in the dataset 

(Packalén et al., 2012). In other words, an observation is excluded (target observation), and a 

prediction is computed with the other observations (reference observations). The prediction 

can be evaluated by the target observation. This procedure is repeated for every single 

observation. The final quality of a technique evaluated with CV is based on the averaged error 

obtained. A general description of the procedure is provided in Figure 3. 

 

 

 

Figure 3. Description of the LOOCV evaluation of the techniques compared in the text. 

 

Parameterization of each submodel at the different stages of the CV was repeated 5 times 

for each technique to prevent skew (due to the random nature of the evolutionary algorithms 

applied to predictor selection and parameterization). The best submodel and the average 

submodel for the 5 executions, ranked in terms of the RMSE reached in the evolutionary 

procedure, were used to calculate the goodness-of-fit statistics.  
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Statistical analysis 

The error of the predictions in the CV was compared for each technique in terms of R2 and 

RMSE. In addition, for statistical analysis of differences between the methods, the absolute 

errors of the predictions made by each technique throughout the 99 iterations in the CV were 

compared (the number of iterations is equal to the number of instances in the database, which 

in this case refers to the 99 plots available). In theory, this should be carried out by Analysis of 

Variance (ANOVA), if the data comply with the underlying assumptions of independence, 

normality and homoscedasticity required for parametric tests. These conditions can be tested 

by respectively the Shapiro-Wilk test, Lilliefor’s test and Levenes’ test. If the data do not 

comply with these conditions, a non-parametric test such as the Friedman’s (aligned) test 

(described by García et al., 2010) should be used. 

Friedman’s (aligned) test first obtains the mean ranking for each technique by taking into 

account the position obtained for each of the results relative to the other. Thus, a ranking of 1 

for one of the techniques signifies that the result is the best of all results obtained in the 

procedure, whereas a rank of m * n, where m is the number of techniques being compared and 

n is the number of tests, indicates the poorest result obtained. After establishing the mean 

rankings for each technique, the Friedman’s (aligned) test and Holm’s post hoc procedure (see 

Luengo et al., 2009 and García et al., 2010, for a complete description) are used for statistical 

validation of the differences between the methods compared. 

Results and discussion 

The results indicated that the features for estimating AGB by the different machine 

learning algorithms evaluated can be classified into three different groups. In order of 

decreasing importance, the first group comprises the spectral bands and the spectral indices, 

the second group comprises the first and second order terrain topographical variables derived 

from DEM, and the third group comprises the texture features derived from the NDVI.  The 

correlation derived from the texture image with a moving window of 7x7 pixels (CR7x7, see 

Table 2 for acronyms and abbreviations) was also a key feature in the MLR technique, 

although it was not important in the other techniques (see Figures 4 and 5). 
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Figure 4. Relative frequency of ocurrence (importance) of each attribute in the best models 
obtained by each technique (in terms of the sum of residuals). 
 

 

 
Figure 5. Relative frequency of ocurrence (importance) in the averaged models obtained by 
each technique (in terms of the sum of residuals).  
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The results obtained in terms of the RMSE were used for statistical comparison of the 

techniques. The comparison is summarised in histograms showing the relative positions 

reached (rankings) for each technique (Figures 6 and 7). Qualitatively, the SVM technique 

yielded the best results when the parameterization and selection of predictors were relatively 

optimal, whereas on average, the RF technique produced the best results. 

 

 
Figure 6. Absolute frequency of relative position achieved by each technique (ranking) with 
the best parameterization of 5 executions. 
 

 

Figure 7. Absolute frequency of the relative position achieved (ranking) by each technique 
with average parameterization. 
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The rankings associated with the Friedman’s (aligned) test and a post hoc Holm’s test for 

paired comparison of the best algorithms (Table 4) confirm the idea (previously outlined in 

Figures 6 and 7) that SVM and RF techniques yielded the best results, considering 

respectively the best model and the averaged models for the 5 executions per plot. Friedman’s 

(aligned) test yielded a p-value <0.0001, thus confirming rejection of the null hypothesis (i.e. 

that the overall performance of the methods was not significantly different).  
 

 
Table 4. Mean rankings for the models obtained by each technique (the best mean ranks are 
indicated in bold). 

Technique Ranking 
Best Models only Averaged Models 

MLR 197.98 188.11 
Knn 186.69 184.37 
RF 232.16 176.04 

SVM 161.18 197.48 
 
 

Application of Holm’s procedure revealed that the results yielded by the SVM technique 

were significantly different from those produced by all other techniques except kNN 

(p=0.1131, higher than the significance levels of the test, α=0.05). Comparison of RF and the 

other techniques for the averaged models showed that none of the comparisons was 

statistically significant and it was therefore not possible to infer that RF performed better than 

the other models. The results of both procedures are summarised in Table 5. 

 
Table 5. Results of the post hoc Holm’s test of paired comparisons for SVM (best models 
only) and RF (averaged models). The comparisons that were not significantly different are 
indicated in bold type. 

Best Models only Averaged Models 
Technique P z Holm Technique p z Holm 

RF 0.000 4.408 0.0167 SVM 0.174 1.36 0.0167 
MLR 0.022 2.285 0.025 MLR 0.444 0.77 0.025 
kNN 0.113 1.584 0.05 kNN 0.598 0.53 0.05 

 

 

Finally, the results for all plots were used to calculate the goodness-of-fit statistics: R2 and 

RMSE. Table 6 summarises the application of these to the best models and the averaged 

models, in which kNN was the best technique in both cases. Maps of the AGB estimations 

obtained for the study area by each technique are shown in Figure 8.  
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Table 6. Summary of the goodness-of-fit statistics taking into account the overall results for 
the 99 plots. The best models are indicated in bold. 

  MLR kNN SVM RF  
 Best models  

only 
R2 0.54 0.66 0.62 0.48  

 RMSE (Mg 
ha-1) 

29.61 26.64 27.28 31.61  

 Averaged 
models  

R2 0.36 0.41 0.30 0.29  
 RMSE (Mg 

ha-1) 
34.67 33.53 36.15 39.20  

 
 

 

 

 

 

 

  

 
Figure 8. Biomass maps derived by each technique: MLR (top left), kNN (top right), RF 
(bottom left) and SVM (bottom right). 
 

The results showed that the features that were most important for estimating AGB by the 

different machine learning techniques evaluated (kNN, RF and SVM) correspond to the bands 
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and spectral indices derived from the Landsat-5 TM sensor (Band 1, Band 5 and Band 7, IAF, 

ALB, MSAVI2 and NDVI, see Table 2 for acronyms and abbreviations), which are correlated 

with many ecosystem attributes, such as photosynthetic activity, total plant cover, plant and 

soil moisture, plant stress and biomass (Lu et al., 2004; Günlü et al., 2014). Several studies 

have demonstrated that spectral bands and vegetation indices are usually good predictors for 

estimating AGB (Lu et al., 2012; Castillo-Santiago et al., 2013; Lu et al., 2016; López-

Serrano et al., 2016a, 2016b, 2016c). Terrain features are potentially related to key features for 

forest stand development, such as overall climate characteristics, insolation, 

evapotranspiration, run-off, infiltration, wind exposure and site productivity (McNab 1989, 

Roberts and Cooper 1989, Wilson and Gallant 2000). Finally, the texture features may address 

some of the existing problems with vegetation index saturation and the data acquisition 

constraints related to mapping forest biomass at regional scales (Kelsey and Neff, 2014). 

The results obtained in the statistical study of the 99 plots showed that the SVM technique 

yielded the best fits once the parameterization had been optimized (averaged ranking of 

161.18, which is about 15% better than kNN, the second best technique), thus confirming that 

this type of technique is of great potential for improving biomass estimation, independently of 

the type of sensor to which it is applied, as demonstrated in recent studies (e.g. Zhao et al., 

2011; García-Gutiérrez et al., 2015). However, the results show that SVMs are very sensitive 

to parameterization, which hampers their use by non-experts. For non-experts, an auto-

parameterization procedure such as Grid Search, which is a classic technique used to fit 

machine learning models (Gleason and Im, 2012), could be applied. Unfortunately, this type 

of procedure has an important drawback as it separates optimization of parameters (specific to 

each technique) from feature selection. Both concepts (parameterization and feature selection) 

are closely related and should occur simultaneously (Huang and Wang, 2011). Nonetheless, 

Grid Search represents a simpler alternative to more complex procedures such as 

metaheuristics. 

A boxplot with the AGB estimations obtained for the sample plots with the different 

approaches used after just one evolutionary parameterization and feature selection is shown in 

Figure 9. Both MLR and RF present a range of AGB estimations in the study area similar to 

the values observed in the sample plots used as training data (2 to 234 Mg ha-1), especially 

MLR, although MLR tended to overestimate the values (Figure 9). However, the kNN and 
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SVM techniques estimated a limited range of values of AGB (from 56 to 138 Mg ha-1 for kNN 

and from 56 to 160 Mg ha-1 for SVM). This was mainly due to inaccurate parameterization by 

the evolutionary procedure (see averaged models vs. optimal models in Figures 6 and 7). In 

the case of kNN, inadequate feature selection may lead to a decrease in accuracy due to the 

Hughes effect. For the SVM, the number of parameters was higher and the evolutionary 

procedure was therefore more complex. Note that if the penalty factor (parameter C) is not 

well fitted and the hyperplane is thus not optimized, problems related to over or underfitting 

may occur (Xie et al., 2008). In addition to the special random nature of evolutionary 

computation, this risk makes the automatic configuration for SVM difficult in a single 

optimization procedure (due to the random nature of evolutionary computation). 

Independently of whether automatic or a manual parameterization is selected, determination of 

the best configuration for remote sensing non-parametric techniques (especially for the most 

complex such as SVMs and not so much for others such as RF) is also time-consuming, 

scenario-dependent and sometimes requires a priori knowledge (Camps-Valls and Bruzzone, 

2005). 

 

 
Figure 9. Box-plot of AGB estimations in the study area for the four techniques used (right) 
and AGB observed values in the sample plots (training data). Boxes represent the interquartile 
range, and maximum and minimum of AGB estimations are represented by upper and lower 
whiskers, respectively. 
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Conclusions 

The kNN, RF and SVM machine learning algorithms are powerful tools for estimating 

aboveground forest biomass with remote sensing datasets, and they are all viable and accurate 

alternatives to the classic parametric MLR method. In addition to the usual sources of 

uncertainty associated with the accuracy of the AGB estimations from remote sensing data 

(field measurement errors, plot locations errors, errors of the individual tree biomass equations 

or error caused by geometrical and radiometric correction of remotely sensed data), 

parameterization of machine learning algorithms also has an important influence on the final 

performance of the models. The choice of method used will largely depend on the user’s 

capacity to carry out that parameterization, because the techniques (especially SVMs) are not 

easy to apply and require a certain degree of expertise. Our findings indicate that SVM is the 

best alternative for experts, whereas RF represents a balance between model accuracy and ease 

of use for non-experts although differences with kNN could not be statistically demonstrated. 
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Abstract 
 
Solar radiation is affected by absorption and emission phenomena during its downward 

trajectory from the sun to the earth’s surface and during the upward trajectory detected 

by satellite sensors. This leads to distortion of the ground radiometric properties 

(reflectance) recorded by satellite images, used in this study to estimate aboveground 

forest biomass (AGB). Atmospherically-corrected remote sensing data can be used to 

estimate AGB on a global scale and with moderate effort. The objective of this study 

was to evaluate four atmospheric correction algorithms (for surface reflectance) 

(ATCOR2, FLAASH, COST and 6S) and one radiometric correction algorithm (for 

reflectance at the sensor) (ToA) to estimate AGB in temperate forest in the northeast of 

the state of Durango, Mexico. The AGB was estimated from Landsat-5 TM imagery and 

ancillary information from a digital elevation model (DEM) using non parametric 

Multivariate Adaptive Regression Splines (MARS) technique. Field reference data for 

the model training were collected by systematic sampling of 99 permanent monitoring 

sites established during the winter of 2011. The following predictor variables were 

identified in the MARS model: Band7, Band5, slope (β), NDVI and MSAVI2. After cross 

validation, 6S was found to be the optimal model for estimating AGB (R2 = 0.71 and 

RMSE=33.5 Mg ha-1, 37.61% of the average stand biomass). We conclude that 

atmospheric and radiometric correction of satellite images can be used along with non-

parametric techniques to estimate AGB with acceptable accuracy. 
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Introduction 

Apart from sensor gains/offsets, solar irradiance and Sun-Earth geometry, the characteristics 

of electromagnetic energy detected by remote sensing optical sensors is affected by particles 

and other components present in the atmosphere. Hence, as solar radiation passes through the 

atmosphere (Sun-surface-sensor), it is affected by absorption or scattering by particles in 

suspension (aerosols) and other atmospheric elements, thus creating a hazy effect that distorts 

the radiometric properties of satellite images (Jensen, 1996; Gao et al., 2009; Tyagi and 

Bhosle, 2011; Tan et al., 2012). Various algorithms have been developed to correct such 

effects in the image. These include calibrations based on sensor parameters, solar-Earth 

geometry, dark object subtraction and radiative transfer (Hadjimitsis et al., 2010; Li et al., 

2012; Jaelani et al., 2015; Lee et al., 2015). Correction of atmospheric effects is important in 

relation to improving data quality (Vanonckelen et al., 2013; Moreira et al., 2014). However, 

the use of correction algorithms to minimize atmospheric effects, especially the scattering and 

absorption caused by aerosols, remains challenging (Roy et al., 2014). This particularly 

applies to the parameterization of algorithms for calculating the surface reflectance for its 

eventual use in estimating aerial or aboveground forest biomass (AGB) (Ju et al., 2012). 

AGB is an important parameter that provides information about the current status of forests 

and therefore facilitates forest management decisions (Ediriweera et al., 2013; Gagliasso et al., 

2014). The use of optical remote sensors of medium spatial resolution, such as the Landsat 

Thematic Mapper (TM), has become increasingly common in the last few decades. The use of 

these sensors for large-scale monitoring of AGB dynamics, particularly in the case of multi-

temporal/multi-scene analyses or unevenly-distributed atmospheric effects in single-image 

analyses, frequently involves the application of different atmospheric correction algorithms. 

Such algorithms correct distortions between or within images other than those related to real 

land cover differences (Hantson and Chuvieco, 2011; Balthazar et al., 2012; Cortés et al., 

2014; Kelsy and Neff, 2014; Tian et al., 2014). 

The aim of the present study was to evaluate four different atmospheric correction 

algorithms (surface reflectance)—COST (Cosine of the Solar Zenith Angle), a modification of 

the dark object subtraction method (Vicent, 1972) with the addition of a multiplicative 

correction for atmospheric transmittance (Chavez, 1996), ATCOR2 (Atmospheric Correction 

for Flat Terrain), (Richter, 1996), FLAASH (Fast Line-of-sight Atmospheric Analysis of 
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Spectral Hypercubes, (Adler et al., 1998)) and 6S (Second Simulation of Satellite Signal in the 

Solar Spectrum, (Vermote et al., 1997), and one radiometric correction algorithm (apparent 

reflectance at sensor), ToA (Top of Atmosphere), for estimating AGB from spectral data 

captured by the Landsat 5 TM sensor and topographic variables derived from a digital 

elevation model (DEM) generated using data collected by sampling of the permanent forest 

growth and soil research sites (SPIFyS) established in a temperate forest in the northwest of 

the state of Durango, Mexico. 

Different methods could be used for remote AGB estimation in forests, including 

parametric and nonparametric approaches. However, since forest structure and biomass often 

entail nonlinear variability, variable interaction across scales and autocorrelation, 

nonparametric approaches often markedly outperform parametric methods (Saatchi et al., 

2001). 

In this study, we investigate remote AGB estimation of mixed and uneven-aged forests 

using the multivariate adaptive regression splines (MARS). To the best of our knowledge, 

MARS have rarely been used for remote estimation of AGB (Moisen and Frescino, 2002; 

Güneralp et al., 2014, Filippi et al., 2014), but in these cases, the method has performed best 

for prediction than other parametric and non-parametric approaches, such us linear models, 

classification, regression trees and artificial neural networks (Moisen and Frescino, 2002) or 

hybrid tree-based algorithms (Moisen and Frescino, 2002; Güneralp et al., 2014). 

 Materials and Methods 

 Study Area 

The study area is located in the northwest of the state of Durango (Figure 1). The forest 

vegetation comprises pine (Pinusspp.), oak (Quercus spp.), fir (Abies spp.) and plurispecific 

stands with different proportions of species of the genera Pinusand Quercus, in accordance 

with the Land and Vegetation Use Map, scale 1:250,000, Series V [30]. The weather is cold in 

the canyons (with temperatures ranging from −20 °C in winter to 20 °C in summer) and 

mildor warm in the valleys (with temperatures ranging from 10 °C in winter to 40 °C in 

summer). 

http://www.mdpi.com/2072-4292/8/5/369/htm#fig_body_display_remotesensing-08-00369-f001
http://www.mdpi.com/2072-4292/8/5/369/htm#B30-remotesensing-08-00369
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Field Data 

The field data were AGB values taken from a database of stand variables measured in 99 

permanent forest growth and soil research sitesSPIFyS established during the winter of 2011 

in accordance with the method developed by Corral-Rivas et al. (2009). The SPIFyS are 

square plots of a size of 50 × 50 m (surface area, 2500 m2). The location of the sites was 

carried out by systematic sampling at the regional level using a squared grid of five 

kilometers, although a small squared grid (3 km) was used on very steep areas to include their 

variability. 

 
 

Figure 1. Location of the study area and of the permanent forest growth and soil research sites 
(SPIFyS). 

In each sample plot, the tree species were recorded, and the diameter at breast height (cm) 

and total height (m) of all standing trees were measured. Species-specific models developed 

for the study area were used to estimate individual tree aboveground biomass (Vargas-

Lagarreta, 2013). The goodness of fit for such statistical models ranged from 0.87–0.99 (R2), 
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and the root mean square error (RMSE) varied from 22.8–95.2 kg. Once the tree aboveground 

biomass was estimated, all values from each sampling plot were summed and expressed on a 

per hectare basis. Table 1 shows the descriptive statistics of the main stand variables. 

Spectral Data from the Landsat 5 TM Sensor 

The image used in the study, which was captured by the Landsat 5 TM sensor in April 

2011, is available at the U.S. Geological Service (USGS) website [33]. The sensor operates in 

seven bands of the electromagnetic spectrum: Band 1 (blue, 450–520 nm), Band 2 (green, 

520–600 nm), Band 3 (red, 630–690 nm), Band 4 (near-infrared, 760–900 nm), Bands 

5 and 7 (mid-infrared region, 1550–2350 nm) and Band 6 (which provides information in the 

thermal infrared region and is not used in this type of study). Likewise, the spectral indices 

Normalized Difference Vegetation Index (NDVI, (Rouse et al., 1974)) and Modified Soil 

Adjusted Index (MSAVI2, (Baret and Guyot, 1991)) were used. Such indexes are potentially 

less sensitive than single band values to artefacts due to differences in light conditions, 

exposed soil or terrain slope and orientation, which might eventually affect AGB estimation. 

 

Table 1. Descriptive statistics of the main stand variables estimated from the 99 permanent 
sample plots. The dominant stand height was calculated as an average value from the 100 
thickest trees per hectare. 

Variable Mean 
Standard 
deviation 

Minimum 
value 

Maximum 
value 

Number of stems per ha 655.47 322.25 224 2264 
Diameter at breast height per ha 
(cm) 18.44 3.46 11.69 31.12 

Dominant height (m) 14.62 3.72 6.87 24.81 
Stand biomass (Mg ha-1) 89.03 43.45 2.70 234.03 

2.4. Radiometric Correction Algorithms 

A useful prior step to the interpretation of satellite images is converting the digital numbers 

(DNs) stored in the original image into biophysical variables of standard significance 

(reflectance). These variables are comparable in the same sensor over time and over scenes, as 

well as between different sensors and between remote sensing and other methods of detecting 

electromagnetic energy. The correction is also advisable in the case of unevenly-distributed 

atmospheric effects in the image and also when vegetation indexes based on band ratios are 

http://www.mdpi.com/2072-4292/8/5/369/htm#table_body_display_remotesensing-08-00369-t001
http://www.mdpi.com/2072-4292/8/5/369/htm#B33-remotesensing-08-00369
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included in the analyses (Lavreau, 1991; Guyot and Gut, 1994; Richter, 1996; Carlotto, 1999; 

Carlotto, 1999; Song et al., 2001; Liang et al., 2002). In order to calculate surface reflectance, 

the atmospheric effects must be removed. This involves estimating the atmospheric 

transmissivity (both up and down welling), diffuse irradiance and atmospheric radiance due to 

scattering (Chuvieco, 2010). In the present study, we evaluated five different radiometric 

correction methods: the first four methods (namely ATCOR2, COST, FLAASH and 6S) 

including atmospheric corrections (surface absolute reflectance), while the fifth (ToA) without 

considering atmospheric effects (apparent reflectance at the sensor) for the final estimation of 

AGB. 

Atmospheric Correction for Flat Terrain (ATCOR2) 

The aim of ATCOR2 correction (Richter, 1996) is to remove the atmospheric effects in 

order to recover the physical parameters of the Earth’s surface, including the surface 

reflectance, soil visibility and the temperature. The correction is carried out with the ATCOR 

module (Geosystems, 2013) included in ERDAS IMAGINE software, Version 2013(ERDAS, 

2014). 

Cosine of the Sun Zenith Angle (COST) 

This is a radiometric calibration method that considers the atmospheric effect and is based 

entirely on the characteristics of the satellite image, in contrast with other methods of 

atmospheric correction, like ATCOR2, FLAASH or 6S, requiring some extra parameters, such 

as atmospheric profiles, the aerosol models or visibility (Chavez, 1992; 1996). COST applies 

Dark Object Subtraction (DOS, (Vicent, 1972)) to compensate for the additive components of 

the atmosphere, which mainly affect the shortest wavelengths. DOS does not take into account 

the multiplicative effect on the longer wavelengths. For initial estimation of the multiplicative 

effect, the value of the atmospheric transmittance along the path from the ground to the sensor 

(TAUz) was computed from the cosine of the solar zenith angle (Moran et al., 2008). This 

correction was carried out by implementing the algorithm in the Model Maker® module of 

ERDAS IMAGINE software, Version 2013 (ERDAS, 2014). 

Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

This is an advanced atmospheric correction module based on the MODTRAN4 algorithm of 

radiative transfer developed by Spectral Sciences Inc. (Burlington, MA, USA) under the 
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sponsorship of the U.S. Air Force Research Laboratory (Adler-Golden et al., 1998; Anderson 

et al., 2002). The technique is initially based on the standard equation of spectral radiance for 

each pixel of the sensor, which applies to the range of wavelengths of solar radiation (thermal 

emission is omitted) and a Lambertian and flat surface or their equivalents. It considers the 

radiance reflected from the Earth’s surface and scattered by the atmosphere towards the 

sensor. The difference between these two radiances is due to the adjacency effect (spatial 

mixture of radiance among nearby pixels) caused by atmospheric scattering. The correction 

was carried out with the FLAASH module in ENVI® software, Version 5.1 (EXCELIS, 2013). 

Second Simulation of Satellite Signal in the Solar Spectrum (6S) 

This procedure eliminates atmospheric effects on the reflectance values in images captured 

by sensors on board satellite or aircraft platforms. It is based on an advanced code of radiative 

transfer, designed for simulating the interaction between solar radiation and an atmospheric-

surface system, together with a wide range of atmospheric, spectral and geometric conditions 

(Vermote et al., 1997). The code acts on the basis of the successive order of scattering (SOS) 

method and explains the polarization of radiation in the atmosphere by calculating the 

different components. The scenes used to belong to the National Landsat Archive Processing 

System (NLAPS) and correspond to the product obtained by Landsat 4–5 Thematic Mapper 

Level 1 of surface reflectance processed by the Standard Landsat Product Generation System 

(LPGS) and using the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) algorithm (available at the U.S. Geological Service website (USGS, 2011). 

Apparent Reflectance at the Top of Atmosphere (ToA) 

This technique enables calculation of the apparent reflectance in a satellite image and 

consists of converting the DNs to radiance values and then to reflectance values. The word 

“apparent” refers to the fact that the reflectance has not been corrected for atmospheric effects 

and represents an initial normalization of the image (Huang et al., 2014). The correction was 

carried out with the ‘‘apparent reflectance’’ method implemented in the “landsat” package 

(Goslee, 2015) in the R software (R Core Team, 2015). 

Parameters Derived from the Digital Elevation Model (DEM) 

The primary and secondary terrain parameters were calculated from the DEM (Table 2), 

after the application of a low bandpass filter with a moving window of 5 × 5, with the aim of 

http://www.mdpi.com/2072-4292/8/5/369/htm#table_body_display_remotesensing-08-00369-t002
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reducing the banding effect present in the original archive (INEGI, 2014). These parameters 

are considered as predictor variables for estimating AGB, because they are directly related to 

the distribution and development of forest species and can subsequently be evaluated (MaNab, 

1989; Roberts and Cooper, 1989). 

 

Generation of a Database 

The database used to estimate AGB was generated by extracting the mean values of the 

satellite image pixels after each of the radiometric correction techniques and of the different 

DEM parameters by considering a buffer of 25 m for the geolocalization of the SPIFyS plots. 

The values were extracted using the “raster” package (Hijmans, 2015), implemented in R 

statistical software (R Core Team, 2014). 

Table 2. Additional field variables used to model the aboveground forest biomass (AGB). 

Variable Formula Reference 

Elevation Digital Elevation Model  

Slope (β) β= arctan [(𝐺2 +  𝐻2)1/2]  

Transformed Aspect (Trasp) Trasp= 1- cos ((π / 180)(α- 30))
2

 [42] 

Terrain Shape Index (TSI3) TSI=�̅�/R [41] 

Wetness Index (WI) WI= ln (As/tanβ) [43] 

Profile curvature (Ø) Ø=−2
𝐷𝐺2+EH2+FGH

𝐺2+𝐻2  

[44] 
Plan curvature (ω) 𝜔=2

𝐷𝐻2+EG2+FGH

𝐺2+𝐻2  

Curvature (x) x= 𝜔 – Ø 
where: 
�̅�: Average elevation. 
R: Point radio altitude units. 
As: Drainage area specified. 
tanβ: Local slope angle. 
D, F, G and H were derived according to equation of Chavez (1992). 
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Statistical Analysis 

Analysis of Variance 

In order to establish whether there were any significant differences between the radiometric 

correction algorithms considered, analysis of variance (ANOVA) was used to compare the 

values of each spectral band of the sensor obtained by processing the images of the SPIFyS 

and applying the different correction algorithms. The correction algorithm was used as a fixed 

factor: 

         yi=μ + CAi + εi                                                        (1) 

where yi are the values of each spectral band of the sensor corrected by the 

algorithm i, CAi is the correction algorithm used (fixed factor) and εi are the associated errors. 

Prior to the application of the ANOVA, the dependent variables normality and 

homogeneity of variance were checked using respectively Shapiro–Wilk’s test (Shapiro and 

Wilk, 1965) and Levene’s test (Levene, 1960). When the results of these tests indicated that 

the ANOVA assumptions were not satisfied, the dependent variables were transformed by a 

natural log transformation. When the ANOVA indicated significant differences between 

correction algorithms (α = 0.05), Tukey’s multiple comparison test was used to identify which 

algorithms were different. Likewise, box plots were elaborated for each variable (spectral 

band) with the aim of facilitating graphical interpretation of the results. All analyses were 

carried out with R statistical software (R Core Team, 2014). 

Multivariate Adaptive Regression Spline (MARS) 

The statistical analysis was carried out by the non-parametric multivariate adaptive 

regression splines (MARS) proposed by Friedman (Friedman, 1991), using the ‘‘earth’’ 

package (Molborrow, 2015) implemented in the R software (R Core Team, 2014). This 

method involves constructing a non-linear regression model based on a product of functions 

denominated ‘‘smoothed basis functions’’ (splines). The predictors are incorporated in their 

structure as part of a function generating a model for the dependent variable, which may be 

continuous or binary, and at the same time automatically selects the predictors in the final 

model. The general form of the MARS non-parametric regression model, formulated on the 

dependent ‘‘y’’ variable and the “x” predictors, is as follows: 
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y = f (x) + ε (2) 

where ε is the error, and f (x) is the unknown regression function, derived as follows: 

𝑓(𝑥) = 𝛽0 + ∑ 𝛽𝑚

𝑀

𝑚=1

𝐵𝑚(𝑥) (3) 

where β0 is the intercept of the model, Bm (x) is the basis function of the mth base, βm is the 

coefficient of the mth base, and M is the number of bas is functions in the model. Each basis 

function Bm(x) takes one of the following two forms: i) a hinge function of the form max (0, x 

- k) or max(0, k - x), where k a constant value, ii) a product of two or more hinge functions, 

that, therefore, can model interaction between two or more predictors (x). 

The optimal model was selected using the backward procedure: an overfitted model was 

generated with all possible predictor variables and the model was pruned by removing terms 

one by one, deleting the least effective term at each step until the best submodel was found. 

Model subsets were compared using the generalized crossed validation (GCV) criterion. GCV 

is an approximation to the error that would be determined by leave-one-out validation and 

considers both the residual error and the model complexity, evaluated, the optimal model will 

therefore be that yielding the lowest GCV. 

GCV(M) =
∑ (𝑦𝑖 − 𝑓𝑀(𝑥𝑖))2𝑛

𝑖=1

𝑛 (1 −
𝑝𝑀

𝑛 )
2  (4) 

where 𝑦𝑖 are the observed values of the dependent variable, n is the number of 

observations, 𝑓𝑀(𝑥𝑖) is the MARS model with M basis functions, 𝑥𝑖 are the observed values of 

the predictors included in the MARS model and pM is the number of parameters of the MARS 

model. 

 

To analyse the importance of the independent variables that contribute most to the final 

model, three different criteria were used: i) nsubsets, which represents the number of times 
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that each variable is included in a subset (in the final model), ii) sqr rss, which first calculates 

the decrease in the sum of square errors (RSS) for each subset relative to the previous subset, 

and iii) sqr gcv, which uses the same calculation process, but with GCV instead of RSS. The 

criteria sqr rss and sqr gcv are normalized on a scale of 100, to facilitate interpretation of the 

contribution of each predictive variable in the model. 

With the aim of evaluating the performance of the fitted model for each of the radiometric 

correction algorithms, the following statistics were determined to compare the AGB reference 

data for the monitoring plots with the estimates based on the images subjected to different 

corrections: root mean squared error (RMSE), the coefficient of determination (R2) and the 

generalized coefficient of determination (GR2): 

 

 (5) 

 (6) 

𝐺𝑅2 =
1 − 𝐺𝐶𝑉

𝐺𝐶𝑉𝑛𝑢𝑙𝑙
 (7) 

where yi, ŷi and �̅� are respectively the observed, estimated and mean values of the 

dependent variable, n is the total number of observations used to fit the model, p is the number 

of parameters to estimate, and GCVnull is the GCV of a model with a single independent term 

(β0). 

Because the quality of the fit does not necessarily reflect the quality of the prediction, 

assessment of the validity of the model with an independent dataset is desirable (Myers, 1990). 

Therefore, cross-validation was carried out by splitting the dataset into different numbers of 

folds (2–10), and the goodness-of-fit statistics (Equations (5)–(7)) were calculated for each 

fold (test data) by using the models fitted to the other folds (training data). 

Generation of Thematic Maps 
 
The final stage of the overall process illustrated was the calculation of AGB maps. These 

maps were derived by implementing the basic functions resulting from the MARS model fit 
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for each of the atmospheric correction algorithms by using the raster calculator in 

ArcGIS® software (ESRI, 2011). An overview of the workflow described in the previous 

sections is presented in Figure 2. 

 

 
Figure 2. Flow diagram of the processes involved in estimating AGB. 

 

Results 

In the first step, a visual comparison of the application of the different radiometric 

correction algorithms to the Landsat 5 TM image of the study area was done. All atmospheric 

correction algorithms were parameterized using the same type of “rural” aerosol, for zones not 

affected by urban or industrial sources and a visibility larger than 40 km. In comparison with 

the original image in DNs, the brightness of the other images differs due to the 

parameterization used in each algorithm to correct the radiometric and atmospheric effects 

(Figure 3). 

http://www.mdpi.com/2072-4292/8/5/369/htm#fig_body_display_remotesensing-08-00369-f002
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Figure 3. Comparison of the application of the different radiometric correction algorithms: 
(a) original image in DNs (multiband composition 5, 4 and 3), (b) ATCOR2, (c) COST, (d) 
FLAASH, (e) 6S, and (f) ToA. 

 

The mean reflectances of the 99 SPIFyS plots obtained for each band of the Landsat 5 

TM sensor and radiometric correction algorithm were graphically compared (Figure 4). The 

differences vary according to the atmospheric effects corrected by each particular 

algorithm. In general, the spectral signature of the vegetation showed in all cases typical 

behavior: low reflectance in the bands of the visible spectrum (450–690 nm) and high 

reflectance in the near- and mid-infrared bands (760–2350 nm). However, a clear difference 

appears depending on whether the radiometric correction algorithms were applied to 

variables with physical meaning (e.g., ground reflectance) rather than to DNs. In this 

respect, the ATCOR2 and FLAASH algorithms overcorrected the atmospheric effects 

(underestimation of transmissivity) in the short wavelength regions and underestimated 

them in the near- and mid-infrared regions, while COST and ToA produced the inverse 

spectral pattern. Finally, the performance of 6S was intermediate between that of the other 

algorithms evaluated. 

http://www.mdpi.com/2072-4292/8/5/369/htm#fig_body_display_remotesensing-08-00369-f004
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Figure 4. Spectral performance of each of the radiometric correction algorithms 

considered. 
 

As the Shapiro–Wilk’s test indicated that the corrected values of the spectral bands of 

the sensor were not normally distributed, therefore a log transformation was used. The 

ANOVA applied to the data from the 99 SPIFyS plots detected significant differences for 

all algorithms in the visible region (Figure 5), except for the COST and FLAASH 

algorithms inBand 3. Significant differences were observed in the near-infrared region for 

all algorithms tested, except ATCOR2 and 6S, which were included in the same population 

group (Tukey’s test), they also shared characteristics with FLAASH and ToA. Finally, in 

the bands corresponding to mid-infrared regions, the algorithms ATCOR2, FLAASH and 

6S did not provide significantly different results (p > 0.05). 

http://www.mdpi.com/2072-4292/8/5/369/htm#fig_body_display_remotesensing-08-00369-f005
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Figure 5. Box plots for each band of the Landsat 5 TM sensor and corresponding groupings 
of the radiometric correction algorithms (different letters indicate significant differences 
between algorithm performances, at p < 0.05). 

 

The importance of the predictor variables (spectral bands and indices and topographic 

variables) for each of the MARS models fitted to the different radiometric correction 

algorithms was calculated (Figure 6). Results pointed out the near-infrared as the most 

relevant spectral region for AGB prediction. In fact, among the predictor variables,  Band 

http://www.mdpi.com/2072-4292/8/5/369/htm#fig_body_display_remotesensing-08-00369-f006
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7 made the greatest contribution to the capacity for predicting AGB for the different 

algorithms analyzed in almost all the cases except in algorithm 6S, where the variable  Band 

5 appeared as the most important in accordance with the number of times that each variable 

is included in a subset. 

 

 

Figure 6. Importance and selection of predictor variables in the multivariate adaptive 
regression splines (MARS) models for each radiometric correction algorithm considered. 

 

 

Table 3 shows the results of applying the MARS technique for estimating the AGB on 

the basis of different correction algorithms. The algorithm that yielded the best predictions 

was ToA (R2 = 0.89, RMSE = 29.82 Mg·ha−1, 33.49% of the average stand biomass). 

http://www.mdpi.com/2072-4292/8/5/369/htm#table_body_display_remotesensing-08-00369-t003
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However, after the application of cross-validation, the generalized coefficient of 

determination (GCV) decreased to 0.68. By contrast, the algorithm with the lowest 

predictive power was ATCOR2 (R2 = 0.75 and GR2 = 0.59). The algorithm with the highest 

generalized coefficient of determination was 6S (GR2 = 0.71). 

 

Table 3. MARS model selection criteria for AGB estimation and the different radiometric 

correction algorithms considered. 

Algorith
m 

Numbe
r of terms 

Number 
of predictors 

GC
V RSS R

2 GR2 RMS
E 

%RMS
E 

ATCOR2 12 of 
31 9 of 17 780.

84 
45556.6

1 
0.

75 0.59 50.37 56.58 

COST 16 of 
29 9 of 17 572.

13 
26722.4

9 
0.

85 0.70 36.55 41.05 

FLAASH 18 of 
33 9 of 17 737.

91 
30530.2

0 
0.

83 0.61 36.43 40.92 

6S 16 of 
30 12 of 17 552.

26 
25794.2

7 
0.

86 0.71 33.48 37.61 

ToA 21 of 
30 11 of 17 601.

91 
20452.8

3 
0.

89 0.68 29.82 33.49 

where: 
GCV: Generalized Cross Validation 
RSS: Residual Sum of Squares 
R2: Coefficient of determination 
GR2: Coefficient of determination of GCV 
RMSE: Root Middle of Squared of Error 
 

 

Figure 7 shows the variations in the goodness of fit statistics (R2 and GR2) obtained by 

application of the cross-validation technique (nfold = 2–10) to the MARS model fits to each 

of the algorithms considered. In this case, the COST algorithm produced the best results 

and the highest stability, followed by ToA and 6S. 

 

http://www.mdpi.com/2072-4292/8/5/369/htm#fig_body_display_remotesensing-08-00369-f007
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Figure 7. Variations in the goodness of fit statistics obtained by applying the cross-
validation technique (nfolds = 2–10) to the MARS models. 

 

Finally, AGB maps of the study area were generated by implementing the fitted MARS 

models for each radiometric correction algorithm on the satellite image using the raster 

calculator with ArcGIS® software (ESRI, 2011) and then intersected with the vector layer 

of vegetation cover (INEGI, 2012) (Figure 8). 

 

 

Figure 8. Maps of AGB in the study area generated from images corrected using the 
different radiometric correction algorithms considered. (a) ATCOR2, (b) COST, (c) 
FLAASH, (d) 6S, and (e) ToA. 

http://www.mdpi.com/2072-4292/8/5/369/htm#fig_body_display_remotesensing-08-00369-f008
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Discussion 

The use of radiometric correction algorithms enabled the transformation of DNs to 

reflectance values (i.e., variables with biophysical meaning). The spectral reflectance of the 

forest cover in the study area was low (<0.10) in the visible region being typical of 

vegetated land (as chlorophyll absorbs most of the light received from the visible 

spectrum). Accordingly, the reflectance was higher (around 19%) in the near-infrared 

region, indicating the contrast between these regions of the electromagnetic spectrum 

(Fernández and Rodenas, 1999; Chuvieco, 2010) typical of green vegetation. 

In accordance with (Chuvieco, 2010), reflectance in the blue band (450–520 nm) was 

lower relative to the DNs and was distorted by the ToA algorithm, which assumes a 

transparent atmosphere over flat land and perfectly Lambertian surfaces. However, with the 

ATCOR2 algorithm, overcorrection at the shortest wavelengths in the visible region ( i.e., 

green or red bands) is a consequence of scattering caused by particles of ozone and water 

vapor present in the atmosphere (Buho et al., 2009; Richter and Schläpfer, 2015). According 

to Broszeit and Ashraf (Broszeit and Ashraf, 2013), the images corrected using the COST 

algorithm are less accurate than those corrected with the ATCOR2 algorithm for vegetation 

cover, because COST automatically selects the lowest pixel values for each band to 

eliminate atmospheric haze from the data, whereas ATCOR2 uses specific parameters of 

atmospheric geometry and of the sensor for improved conversion of the reflectance data. 

In the present study, the 6S algorithm performed more consistently than the other 

algorithms evaluated (ATCOR2, COST, FLAASH and ToA), because of the capacity of 6S 

to correct the effects of water vapor, high temperature and, therefore, high aerosol levels. 

This finding is similar to that reported by Nazeer et al. (Nazeer et al., 2014), who observed 

that, among five algorithms tested, 6S produced the smallest difference in field-measured 

surface reflectance and that obtained using the Landsat ETM sensor. 

The analysis of variance applied to data from the 99 SPIFyS plots revealed similar 

behavior of the population means for the ATCOR2, FLAASH and 6S algorithms in the 

bands of the mid-infrared region. However, the bands in the visible and near-infrared 

regions indicated a statistically-significant difference in the configuration of the groups of 

algorithms. These findings are consistent with those reported by Mahiny and Turner 

(Mahiny and Tuner, 2007), who compared the first four bands of the Landsat TM sensor 
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under five radiometric correction methods (two relative approaches: pseudo invariant 

features (PIF) and radiometric control sets (RCS), and three absolute approaches: COST, 6S 

and ToA), showing that in most cases, the four bands produced significantly different 

results. 

Regarding the use of the MARS technique for estimating AGB in the present study, the 

ToA algorithm initially showed the greatest predictive power (R2 = 0.89, RMSE = 29.8 

Mg·ha−1, 33.49% of the mean biomass in the stand). This result showed a slightly better 

performance than that reported by Hamdan et al. (2014) who estimated AGB by fitting 

regression models to reflectance data (corrected by ToA) from the SPOT-5 and ALOS 

PALSAR (R2 = 0.803, RMSE = 32.6 Mg·ha−1). Furthermore, in a study in southwest 

Colorado (USA), a lower correlation for biomass prediction (r = 0.86, RMSE = 45.6 

Mg·ha−1) with data corresponding to vegetation indices and texture analysis in Landsat TM 

images corrected by ToA radiometric correction was obtained (Kelsey and Neft, 2014). 

However, further analyses in the present study, such as the use of the generalized error of 

cross-validation (GCV), indicated a GR2 value of 0.68, pointing out a decrease in the 

predictive capacity of the model. Therefore, after application of GCV, the 6S algorithm 

proved to be optimal (GR2 = 0.71) despite the potentially negative effect of considering a 

larger number of predictors (12 of 17) than in ToA correction. It should be taken into 

account that the GCVcriterion considers both the residual error and also the model 

complexity, penalizing those models with a high number of parameters. The results are 

similar to those obtained by Nguyen et al. (2015) in a study carried out in South Korea in 

which it was confirmed that the 6S algorithm fitted by the kNN technique (RMSE = 22.5 

Mg·ha−1) produced better results for estimating AGB than the other algorithms tested 

(DOS, FLAASH and ToA), especially for Landsat ETM bands in the infrared region. 

Furthermore, various studies have concluded that the MARS technique is a flexible method 

that yields robust predictions (Bilgili et al., 2010; Ghasemi and Zolfonoun, 2013). 

The scatterplot of observed versus predicted aboveground forest biomass obtained with 

the MARS model fitted to the spectral data corrected using the proposed algorithm (6S) is 

shown in Figure 9. No trends to under- or over-estimate were observed. 

http://www.mdpi.com/2072-4292/8/5/369/htm#fig_body_display_remotesensing-08-00369-f009


103 
 

 
 

 

Figure 9. Observed versus predicted AGB obtained using the MARS model fitted to the 
spectral data corrected using the 6S algorithm. The broken line corresponds to the diagonal. 

 
This statistical approach also enables identifying the importance of the predictive 

variables, in this case the near-infrared being the most important. Hence, in accordance 

with the nsubsets criterion, the spectral variable Band 7 (2080–2350 nm) contributed most 

to the fitted MARS models for the ATCOR2, COST, FLAASH and ToA algorithms, in 

contrast to algorithm 6S, in which Band 5 (1550–1750 nm) was the most important 

variable. However, the importance of the variables in algorithm 6S, under the 

criteria sqr_rss and sqr_gcv, indicates that Band 7 makes the greatest contribution to the 

MARS model, as also occurred with the other algorithms tested. In this respect, the 

variable Band 7 is associated with the moisture content of the forest stand, so that the 

greater the moisture content of the land cover, the greater absorption in this band of the 

electromagnetic spectrum, in other words, the surface reflectance captured by the sensor 

tends to decrease (Garcia et al., 2005; López-Serrano et al., 2015). 

Among the topographical variables considered, the slope (β) and the wetness index (WI) 

contributed most to defining the MARS models and is also directly related to the moisture 

content in the field sites as a factor that controls run-off, the lower the value of β, the higher 

the moisture content and, therefore, the higher the AGB (Lam, 2004; Hoechstetter et al., 
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2008; Kelsey and Neff, 2014). Hence, it is quite clear that radiometric and topographic 

variables related to water availability played a key role in the prediction of AGB in 

Durango’s temperate forests. 

Regarding the inclusion of vegetation indices, NDVI and MSAVI2 were the variables that 

contributed most to the MARS models, given their potential usefulness in estimating AGB. 

Inclusion of these indices improved the prediction of the biophysical variables in forest 

ecosystems: in the case of NDVI because of it high sensitivity to the chlorophyll content of 

the vegetation (Sesnie et al., 2012; Ali et al., 2015) and in the case of MSAVI2 because of 

its capacity to discriminate soil from vegetation, even in zones with scarce vegetation cover 

(Yao et al., 2015). 

Conclusions 

The study findings demonstrate the potential of the combined application of Landsat 

Thematic Mapper (TM) sensor satellite imagery and the consideration of topographical 

variables for estimating AGB, as well as the effects of different radiometric correction 

algorithms on the estimates obtained. The algorithm that showed the greatest spectral 

stability and that best estimated the AGB after application of the cross-validation technique 

was the 6S algorithm. However, each algorithm has advantages and disadvantages, and the 

user must parameterize each algorithm on the basis of the specific objectives. The MARS 

statistical method proved suitable for AGB estimation by using easy-to-obtain variables 

from remote sensing techniques. For all algorithms considered, the spectral band in the 

mid-infrared region (Band 7), the slope (β) and the wetness index (WI) of the land, both 

related to water availability, along with the vegetation indices MSAVI2 and NDVIwere the 

most important predictor variables for estimating AGB. Generation of an AGB map from 

the fitted models may be used in local and regional forest management, thus facilitating the 

location and precise delimitation of zones with different levels of AGB. Further research 

could aim at testing the effects of radiometric corrections on biomass modelling on a mult i-

scene and/or multi-temporal basis. 
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CAPITULO 6. 

CONCLUSIONES GENERALES 
 

En el presente estudio se ha demostrado el potencial de las imágenes satélite del sensor 

Landsat-5 TM, junto con la consideración de variables topográficas, variables de textura 

derivadas de índices de vegetación e índices de vegetación para cuantificar la AGB, 

constatándose, además, la influencia de diferentes algoritmos de corrección radiométrica de 

las imágenes en los resultados de dicha estimación. 

 

1. Los métodos estadísticos no paramétricos implementados en la presente tesis 

permitieron cuantificar la biomasa forestal aérea con una precision aceptable, de 

acuerdo a la literatura citada, mediante el empleo de variables de fácil obtención a 

partir de técnicas de teledetección. 

2. El enfoque que combina el método de regresión no paramétrica de árboles de regresión 

y clasificación (CART) y el análisis de regresión lineal múltiple (MLR) mejora el 

rendimiento del método de regresión lineal múltiple (MLR) por sí mismo. 

3. Los resultados obtenidos en esta tesis muestran que el método M5P es potencialmente 

útil para la estimación de la biomasa forestal. La información contenida en los canales 

del infrarrojo cercano y medio del sensor Landsat-5 TM demostró ser la más eficiente 

para discriminar o predecir la AGB. 

4. La realización de correcciones atmosféricas junto con la combinación de variables 

relacionadas con la estructura del bosque (SR con variables ASG) puede ayudar a 

resolver sensiblemente los problemas de saturación del NDVI para altos valores de 

biomasa. 

5. Los algoritmos de aprendizaje automático kNN, RF y SVM son herramientas 

poderosas para la cuantificación de la biomasa aérea forestal con los conjuntos de 

datos de teledetección, convirtiéndose todos ellos en alternativas viables y precisas al 

método clásico de MLR paramétrica. 
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6. La elección del método (algoritmos de aprendizaje) dependerá en gran medida de la 

capacidad del usuario para llevar a cabo la parametrización del algoritmo, dado que 

estas técnicas, especialmente SVMs no son fáciles de aplicar y requieren un cierto 

grado de especialización. Nuestros hallazgos indican que la SVM es la mejor 

alternativa para los expertos, mientras que RF representa un equilibrio entre un modelo 

de precisión y una facilidad de uso para los no expertos. 

7. El algoritmo de corrección atmosférica y radiometrica que mostró la mayor estabilidad 

espectral y que mejor estimó la AGB después de la aplicación de la técnica de 

validación cruzada fue el algoritmo 6S. Sin embargo, cada algoritmo utilizado en este 

estudio presenta ventajas y desventajas, y el usuario deberá parametrizar cada 

algoritmo sobre la base de sus objetivos específicos.  

8. La banda espectral del infrarrojo medio (Band7), la pendiente del terreno (β), el índice 

de humedad y los índices de vegetación MSAVI2 y NDVI fueron las variables 

predictoras con mayor importancia en la estimación de la AGB para todos los 

algoritmos considerados.  

9. La generación de una cartografía de la AGB derivada de los modelos ajustados en este 

trabajo puede ser utilizada en los planes de manejo forestal a nivel local y regional, 

facilitando la localización y delimitación precisa de las zonas con diferentes rangos de 

AGB. 

 

RECOMENDACIONES PARA FUTURAS INVESTIGACIONES 
 

En los estudios de cuantificación de biomasa aérea forestal mediante sensores remotos 

en bosques templados de la Sierra Madre Occidental es recomendable considerar la 

geolocalización de las parcelas en campo con un GPS (Global Positioning System) de 

precisión submétrica, con el fin de poder disminuir el error de localización de dichas parcelas 

en las imaganes de satélite y mejorar la fiabilidad y robustez de los modelos ajustados.  

Se sugiere ampliar la base de datos actual incluyendo un mayor número de parcelas 

con varios inventarios para obtener modelos más representativos y poder aplicarlos para 

estimar la AGB a una escala nacional empleando sensores remotos. 
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También se suguiere hacer nuevos estudios usando fuentes alternativas de datos 

espectrales como pueden ser imágenes de muy alta resolución espacial y espectral o el uso de 

drones y/o LIDAR (a nivel local para posteriormente ser implementado con otro sensor como 

Landsat para una escala global), especialmente para el caso de bosques con estructuras 

verticales y horizontales heterogéneas, con un gran número de especies y con amplios rangos 

de edades, como son los bosques de México, además de orientarse a probar los efectos de 

correcciones radiométricas en el modelado de la biomasa cuando se cuenta con información 

multi-escena y/o de base multi-temporal. 

 


